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Flow and phase transitions in micellar systems

Shear thickening & time-dependent rheology

Outline
Basic shear thickening phenomena
Wormlike micelles
Experimental approach – light scattering microscopy
Rheological & structural behavior

Collaborators

Chu-heng Liu (Xerox) – light scattering microscopy
Philippe Boltenhagen (Strasbourg) – rheo-scattering

Yuntao Hu (Unilever ) – rheo-scattering
Jacqueline Goveas (Rice Univ. ) – theory
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Worm-like micellar solutions
(in water)

random
coil

~10-104Å

~40 Å

H-C tail – hydrophobic

Polar head – hydrophilic
(often charged) H2O

H2O

Concentration regimes

• critical micelle concentration (cmc)

• overlap concentration (c* )

c < cmc → only free surfactant molecules
c > cmc → micelles + free surfactant molecules

micelles overlap each other above this concentration
experimentally often defined by the concentration where

solution viscosity = twice solvent viscosity

surfactant
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Shear-thickening worm-like micellar solutions

CTAB + NaSal + H2O   (cetyltrimethylamonium bromide + sodium salicylate + water)
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• Sal– ions are incorporated into micelles ~1:1  (NMR)

(this is unusual – most charged micelles are not neutral!)

Most micellar systems which exhibit shear thickening are like this

• c* ~ a few millimolar
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Shear thickening in dilute worm-like micellar solutions
(basic rheology)
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Shear thinning

Shear thickened state

Shear thinning
(after shear thickening)
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Note long latency time 
prior to shear thickening
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Response after turning on steady
shear rate greater than some threshold

Concentrations for shear thickening:   ~cmc < c < ~3-5 c*
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Rheometer

Experimental Approach

— simultaneous mechanical & structural measurements —
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Cylindrical
lens

• Illuminate sample in transparent
shear cell with sheet of light

• Collect light scattered by fluid
structures with video camera

(dark-field microscopy)

transparent
shear cell

li ght scattering microscopy
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Time-dependent rheology & microscopy above the critical shear rate
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γ = 80

li ght scattering 
microscopy 
images

• growth of white structure
associated with increase in
apparent viscosity
⇒ white structure is very

viscous or even gel-li ke

Arrows show growth of shear-induced structure

• a white structure starts
growing from inner cylinder
(left) after about 1 minute

• inner cylinder at left
outer cylinder at right
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motor

Measuring velocity profile

Laser

CCD

Video monitor

Cylindrical
lens

• orient sheet of light horizontall y

• track movement of tracer particles
move through illuminated sheet

transparent
shear cell
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Velocity profiles during shear thickening experiment

1.00.50.0

(e) 3071 s

1.00.50.0

(c) 735 s

There is li ttle or no flow
within the “white” phase

⇒ we can call i t a ~gel

Note: shearing a gel causes it to
scatter more li ght

1.00.50.0

(b) 438 s

gel
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(4) This process continues until there are no more micelles available to attach to gel

(3) This causes more gel to form and further increases the shear rate & stress

(2) Since the gel doesn’ t flow, the shear rate and stress in theremaining fluid increase

� �

γ γ> c(1) When           , “gel” begins to grow from inner cylinder

Why the steady state gel thickness & apparent viscosity increasediscontinuously ...
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40

• inner cylinder at left
outer cylinder at right

• a white structure starts
growing from inner
cylinder after about 120 s

• growth of white structure
associated with increase in
apparent viscosity
⇒ white structure is very

viscous or even gel-li ke

• gel-like structure continues
to grow outward until reaching
a steady-state thickness of
about 5/8 of the cell gap width

Time-dependent rheology & microscopy for controlled stress

314 s 363 s 460 s 666 s
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constant stress,  Paσ = 06.



Rheology of Shear-Thickening Micellar Solutions

Dr. David Pine, UCSB (ITP Complex Fluids Program 4/1/02) 6

11

0

20

30

10

ap
pa

re
nt

 v
is

co
si

ty
 (

m
Pa

-s
)

0 100 200 300 400

time (s)
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Increase the stress …

• at higher level of stress, gel
seems to nearly fil l the gap

• there continues to be a close
correspondence between the
apparent viscosity and the
thickness of the gel-like
structure

40
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HOMOGENEOUS NUCLEATION

31 s

• at 31 s, the gel is barely visible but can
be seen nearly throughout the gap

50 s

BUT ...

• the apparent viscosity does not
rise significantly until ~10 s later

34 s

• at 34 s, the gel is clearly visible
& fil ls gap

21 s • at 21 s, there is no gel86 s

What is happening ?

BUT ... sometimes the correspondence between
gel thickness & apparent viscosity breaks down ...
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Nucleation and stability of gel phase

Mechanical equilibrium ⇒
(balance torque at r)

σ ∝ 1
2r

r

Couette cell
(top view)

⇒ Stress is greatest near inner cylinder

• when stress or shear rate is increased
incrementally, gel nucleates only at
the inner cylinder

• when stress or shear rate is increased
such that σ >> σc , gel nucleates
everywhere in the cell where
σ >> σc

HOMOGENEOUS NUCLEATION
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Role of stress and shear rate
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• In region II,           , but gel remains

under controlled stress

• Shear rate in gel phase is nearly
zero but gel phase persists for σ > σc

• Gel phase is observed iff σ > σc

⇒ stress (and not shear rate) 
controls the formation of gel

� �γ γ< c
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Shear thickening under constant stress and constant shear rate
a rheological phase diagram (summary of data)
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Quenching from gelled state to lower shear rate
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Quench experiment
(1) prepare system in high shear full y gelled state
(2) reduce shear rate & follow evolution of stress
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40 s
369 s

438 s

499 s

3

2

1

0
150010005000

time  (s)

“Melting” of gel
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Effect of counterion valence on critical shear rate & stress
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1 mM

5 mM
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More rheology …


