Can Jet Precession in SGRBs Distinguish NS-NS from BH-NS Mergers?

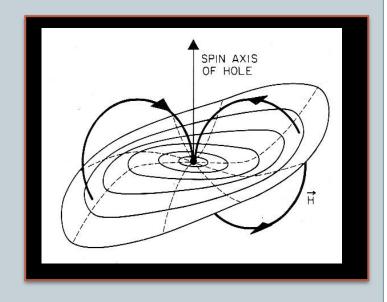
NICK STONE - 8/2/12

IN COLLABORATION WITH AVI LOEB & EDO BERGER

HARVARD UNIVERSITY ASTRONOMY DEPARTMENT

Compact Object Mergers

- Increasing observational evidence of CO merger progenitors for SGRBs
- Open question: BHNS or NSNS?
 - Could be answered by GWs
- But EM method would be good too!
 - ALIGO still years away
 - Combined GW signal + precession [non]detection very informative



Past Work – Precessing SGRB Jets

- Older SGRB models (Blackman+ 96, Portegies-Zwart+ 99)
- CO merger
 - Thick steady-state disks, LT torques, jets aligned with J_{disk} (Reynoso+ o6)
 - o Lightcurves (Lei+ 07)
- We calculate for the first time:
 - \circ Distributions of T_{prec} , ψ_d
 - Evolution of QPO

Tilted Disks

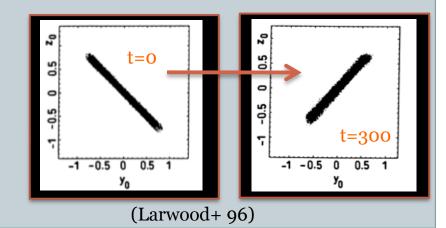
- Kerr metric=> frame-dragging
- NSNS postmerger disks unlikely to have large tilt
 - Generic to BHNS disks
- Differentially precessing mass annuli
- Thin disks: competition between differential $\Omega_{\rm prec}$ and shear viscosity aligns inner disk (Bardeen-Petterson)

(Gravity Probe B website)

Precessing Disks


- Inclined thick disks torqued precess like solid body rotators
 - Specifically, if H/r>α
- Seen in various tilted disks:
 - Protoplanetary (Papaloizou & Terquem 94, Larwood+ 96)
 - BH disk (Fragile+ 07, 08)
 - o BHNS (Foucart+ 11)

Open question: where does


jet point?

 \circ J_{BH} ?

o J_{disk}?

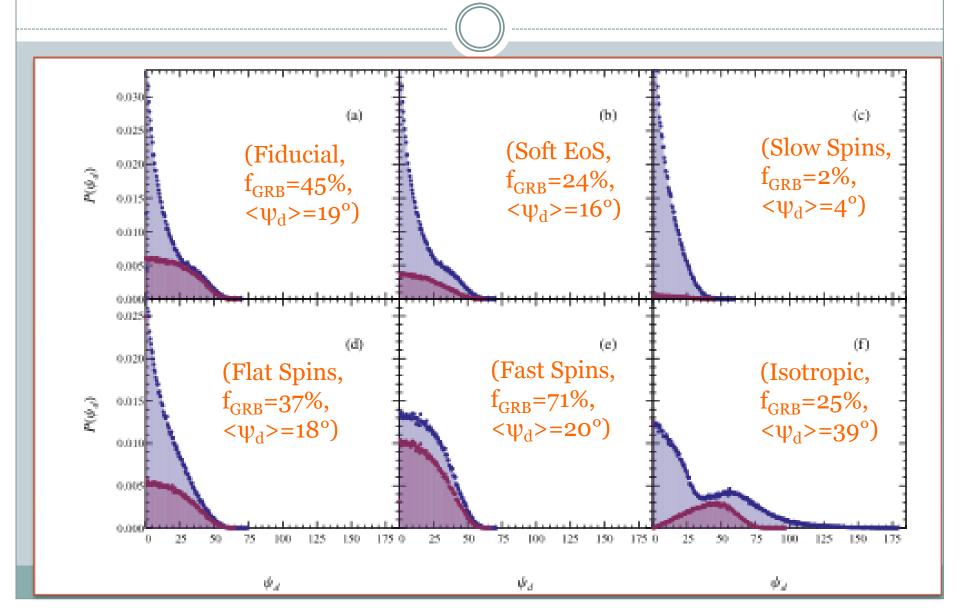
(Fragile & Blaes 08)

(Foucart+ 11)

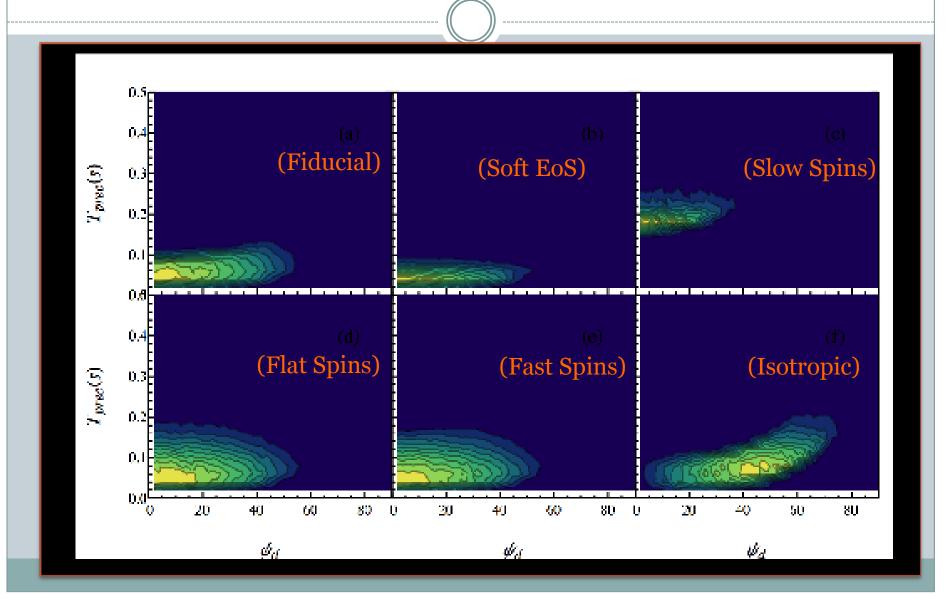
BHNS Progenitor Properties

- BH mass functions:
 - o Özel+ 2010 exponential w/ cutoff
 - o Farr+ 2011 Gaussian
- BH spin functions:
 - Bimodal
 - o Flat
 - o Fast
 - o Slow
- NS mass/radii:
 - Stiff EoS (R_{NS}=13.5 km)
 - o Soft EoS (R_{NS}=11 km)
- Spin-orbit misalignment ψ:
 - o Isotropic < 90°
 - <45°, fully isotropic</p>

Results largely independent of progenitor choices

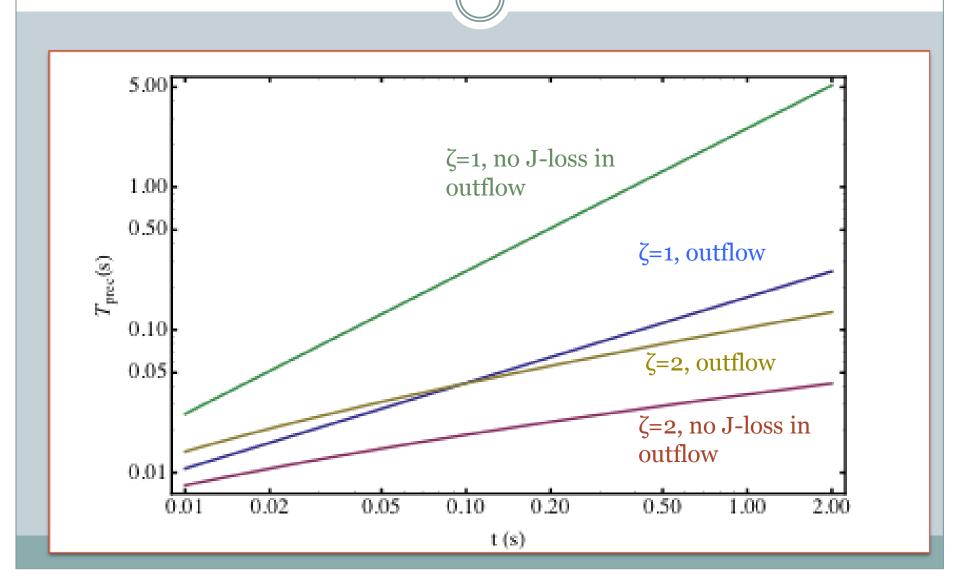

Except for this one!

BHNS Merger Prescriptions


- PN fitting formula used for postmerger mass $m_{\rm f}$, spin $a_{\rm f}$
 - o Lousto et al. 11 − surprisingly accurate!
- Tidal disruption criteria
 - o Newtonian?
 - Calibrated from NR (Foucart 12)
- Precession timescale, amplitude
 - O T_{prec}=2 π sin(ψ_d)(J/ τ), so for $\Sigma = \Sigma_0 (r/r_0)^{-\zeta}$,

$$T_{prec} \approx 0.3 \sec \times \left(\frac{r_0}{50 \, r_G}\right)^{5/2-\zeta} \times \left(\frac{r_i}{10 \, r_G}\right)^{1/2+\zeta} \times \left(\frac{M_{BH}}{M_{Sun}}\right) \times \left(\frac{a_{BH}}{0.9}\right)^{-1}$$

Results – Misalignment


Results – Precession Timescales

Evolution and Observability

- Observability:
 - \circ T_{prec}>10 msec >> Δ t
 - Limited by photon counting statistics
- Two major uncertainties
- Does jet align with J_{BH} or J_{disk} ?
 - o If J_{disk} , then $\psi_d \sim 25^{\circ}$ is the precession angle
 - o If J_{BH} , then $(J_{disk}/J_{tot})\psi_d < 5^{\circ}$ is the precession angle
- How does disk spread viscously outward?
 - I.e. how does T_{prec} grow in time?

Timescale Evolution

Theoretical Uncertainties

Is there a persistent QPO?

Jet || **J**_{disk} (Fireball, BZ?)

Jet $|| \mathbf{J}_{BH}|$ (BZ?)

Yes, <1	ψ_{prec} >~25°
---------	------------------------------

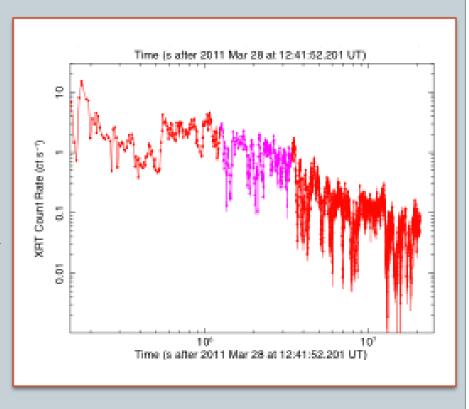
Yes,
$$\langle \psi_{\rm prec} \rangle \sim 5^{\circ}$$

Marginal,
$$<\psi_{prec}>\sim 25^{\circ}$$

Marginal,
$$\langle \psi_{\text{prec}} \rangle \sim 5^{\circ}$$

ζ=1, disk winds

Yes,
$$\langle \psi_{\text{prec}} \rangle \sim 25^{\circ}$$


Conclusions

- Post-merger BHNS disks will have large tilts $\psi_d \sim 25^\circ$, initially short $T_{prec} \sim 0.01$ -0.2s
- Results generally independent of assumptions on progenitor population
- Larger uncertainties physical:
 - o Jet alignment direction?
 - o Viscous spreading of disk?
- Implications:
 - QPO in prompt emission
 - Larger solid angle for jet/outflows

Questions?

Precessing Jets

- Not well-constrained theoretically
- Handful of observational constraints:
 - Microquasar LSI+61°303=> jet
 aligns with disk (Massi+ 12)
 - Swift 1644+57 => jet aligns with BH spin (Stone & Loeb 12)
- But jet launching mechanism may vary between systems!

(Saxton+12)