Introduction to Tensor Models

Igor Klebanov

PrincetonUniversity

Program on Chaos and Order
KITP, Santa Barbara
October 24, 2018

- Based in part on

IK, Fedor Popov, Grigory Tarnopolsky, "TASI Lectures on Large N Tensor Models," arXiv: 1808.09434

Three Large N Limits

- O(N) Vector: solvable because the bubble diagrams can be summed.
- Matrix ('t Hooft) Limit: planar diagrams. Solvable only in special cases.
- Tensor of rank three and higher. When interactions are specially chosen, dominated by the "melonic" diagrams. Bonzom, Gurau, Riello, Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky

$\mathrm{O}(\mathrm{N}) \times \mathrm{O}(\mathrm{N})$ Matrix Model

- Theory of real matrices ϕ^{ab} with distinguishable indices, i.e. in the bi-fundamental representation of $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \times \mathrm{O}(\mathrm{N})_{b}$ symmetry.
- The interaction is at least quartic: $\mathrm{g} \operatorname{tr} \phi \phi^{\top} \phi \phi^{\top}$
- Propagators are represented by colored double lines, and the interaction vertex is
- In d=0 or 1 special limits describe twodimensional quantum gravity.

- In the large N limit where gN is held fixed we find planar Feynman graphs, and each index loop may be red or green.
- The dual graphs shown in black may be thought of as random surfaces tiled with squares whose vertices have alternating colors (red, green, red, green).

From Bi- to Tri-Fundamentals

- For a 3-tensor with distinguishable indices the propagator has index structure

$$
\left\langle\phi^{a b c} \phi^{a^{\prime} b^{\prime} c^{\prime}}\right\rangle=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}}
$$

- It may be represented graphically by 3 colored wires

- Tetrahedral interaction with $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \mathrm{xO}(\mathrm{N})_{\mathrm{b}} \mathrm{xO}(\mathrm{N})_{c}$ symmetry
Carrozza, Tanasa; IK, Tarnopolsky
$\frac{1}{4} g \phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{2}} \phi^{a_{2} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{1}}$

- Leading correction to the propagator has 3 index loops

- Requiring that this "melon" insertion is of order 1 means that $\lambda=g N^{3 / 2}$ must be held fixed in the large N limit.
- Melonic graphs obtained by iterating

Snails vs. Melons

- In large N vector models snail diagrams dominate.
- In matrix models both contribute.
- In tensor models with tetrahedral interactions the melons dominate.

- The snail insertion scales as $g N \sim \frac{\lambda}{\sqrt{N}}$
- The melon insertion as $g^{2} N^{3} \sim \lambda^{2}$
- The melonic dominance would not hold if we adopted the "pillow interactions"

instead of the tetrahedral

Cables and Wires

- The Feynman graphs of the quartic field theory may be resolved in terms of the colored wires (triple lines)

$$
g^{2} N^{6} \sim N^{3} \lambda^{2}
$$

$$
g^{4} N^{9} \sim N^{3} \lambda^{4}
$$

Non-Melonic Graphs

- Most Feynman graphs in the quartic field theory are not melonic are therefore subdominant in the new large N limit, e.g.

- Scales as $g^{3} N^{6} \sim N^{3} \lambda^{3} N^{-3 / 2}$
- None of the graphs with an odd number of vertices are melonic.
- Here is the list of snail-free vacuum graphs up to 6 vertices kleinert, Schulte-Frohlinde

- Only 4 out of these 27 graphs are melonic.
- The number of melonic graphs with p vertices grows as C^{P} Bonzom, Gurau, Riello, Rivasseau

Large N Scaling

- "Forgetting" one color we get a double-line graph.

- The number of loops in a double-line graph is $f=\chi+e-v$ where χ is the Euler characteristic, e is the number of edges, and v is the number of vertices, $e=2 v$
- If we erase the blue lines we get $f_{r g}=\chi_{r g}+v$
- Adding up such formulas, we find

$$
f_{b g}+f_{r g}+f_{b r}=2\left(f_{b}+f_{g}+f_{r}\right)=\chi_{b g}+\chi_{b r}+\chi_{r g}+3 v
$$

- The total number of index loops is

$$
f_{\text {total }}=f_{b}+f_{g}+f_{r}=\frac{3 v}{2}+3-g_{b g}-g_{b r}-g_{r g}
$$

- The genus of a graph is $g=1-\chi / 2$
- Since $g \geqslant 0$, for a "maximal graph" which dominates at large N all its subgraphs must have genus zero: $f_{\text {total }}=3+3 v / 2$
- Scales as $N^{3}\left(g N^{3 / 2}\right)^{v}$
- In the 3-tensor models $\lambda=g N^{3 / 2}$ must be held fixed in the large N limit.

The Sachdev-Ye-Kitaev Model

- Quantum mechanics of a large number $\mathrm{N}_{\mathrm{SYK}}$ of anti-commuting variables with action

$$
I=\int \mathrm{d} t\left(\frac{\mathrm{i}}{2} \sum_{i} \psi_{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{i}-\mathrm{i}^{q / 2} j_{i_{1} i_{2} \ldots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{q}}\right)
$$

- Random couplings j have a Gaussian distribution with zero mean.
- The model flows to strong coupling and becomes nearly conformal. Georges, Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh
- The simplest interesting case is $\mathrm{q}=4$.
- Exactly solvable in the large $\mathrm{N}_{\text {syk }}$ limit because only the melon Feynman diagrams contribute

$+$

- Solid lines are fermion propagators, while dashed lines mean disorder average.
- The exact solution shows resemblance with physics of certain two-dimensional black holes. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; Engelsoy, Merten, Verlinde; Jensen; Kitaev, Suh; ...
- Spectrum for a single realization of $\mathrm{N}_{\mathrm{SYK}}=32$ model with $q=4$. Maldacena, Stanford
- No exact degeneracies, but the gaps are exponentially small. Large low T entropy.

SYK-Like Tensor Quantum Mechanics

- E. Witten, "An SYK-Like Model Without Disorder," arXiv: 1610.09758.
- Appeared on the evening of Halloween: October 31, 2016.

- It is sometimes tempting to change the term "melon diagrams" to "pumpkin diagrams."

The Gurau-Witten Model

- This model is called "colored" in the random tensor literature because the anti-commuting 3tensor fields $\psi_{A}^{a b c}$ carry a label $\mathrm{A}=0,1,2,3$.
$S_{\text {Gurau-Witten }}=\int d t\left(\frac{i}{2} \psi_{A}^{a b c} \partial_{t} \psi_{A}^{a b c}+g \psi_{0}^{a b c} \psi_{1}^{a d e} \psi_{2}^{f b e} \psi_{3}^{f d c}\right)$
- Perhaps more natural to call it "flavored."
- The model has $O(N)^{6}$ symmetry with each tensor in a tri-fundamental under a different subset of the six symmetry groups.
- Contains $4 \mathrm{~N}^{3}$ Majorana fermions.
- The 4 different fields may be associated with 4 vertices of a tetrahedron, and the 6 edges correspond to the different symmetry groups:

- As stressed by Witten, it may be advantageous to gauge the $\mathrm{SO}(\mathrm{N})^{6}$ symmetry.
- This makes it a candidate gauge/gravity correspondence.

The $\mathrm{O}(\mathrm{N})^{3}$ Model

- A pruned version: there are N^{3} Majorana fermions ıк, tarnopolsky

$$
\begin{aligned}
& \left\{\psi^{a b c}, \psi^{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}} \\
H= & \frac{g}{4} \psi^{a b c} \psi^{a b^{\prime} c^{\prime}} \psi^{a^{\prime} b c^{\prime}} \psi^{a^{\prime} b^{\prime} c}-\frac{g}{16} N^{4}
\end{aligned}
$$

- Has $\mathrm{O}(\mathrm{N})_{a} \mathrm{xO}(\mathrm{N})_{b} \mathrm{xO}(\mathrm{N})_{c}$ symmetry under

$$
\psi^{a b c} \rightarrow M_{1}^{a a^{\prime}} M_{2}^{b b^{\prime}} M_{3}^{c c^{\prime}} \psi^{a^{\prime} b^{\prime} c^{\prime}}, \quad M_{1}, M_{2}, M_{3} \in O(N)
$$

- The $\mathrm{SO}(\mathrm{N})$ symmetry charges are

$$
Q_{1}^{a a^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a^{\prime} b c}\right], \quad Q_{2}^{b b^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a b^{\prime} c}\right], \quad Q_{3}^{c c^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a b c^{\prime}}\right]
$$

- The 3-tensors may be associated with indistinguishable vertices of a tetrahedron.

- This is equivalent to
- The triple-line Feynman graphs are produced using the propagator

$\mathrm{O}(\mathrm{N})^{3}$ vs. SYK Model

- Using composite indices $I_{k}=\left(a_{k} b_{k} c_{k}\right)$

$$
H=\frac{1}{4!} J_{I_{1} l_{2} l_{3} I_{4}} \psi^{I_{1}} \psi^{I_{2}} \psi^{I_{3}} \psi^{I_{4}}
$$

The couplings take values $0, \pm 1$

$$
J_{I_{1} l_{2} I_{3} l_{4}}=\delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}} \delta_{b_{1} b_{3}} \delta_{b_{2} b_{4}} \delta_{c_{1} c_{4}} \delta_{c_{2} c_{3}}-\delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}} \delta_{b_{2} b_{3}} \delta_{b_{1} b_{4}} \delta_{c_{2} c_{4}} \delta_{c_{1} c_{3}}+22 \text { terms }
$$

- The number of distinct terms is

$$
\frac{1}{4!} \sum_{\left\{l_{k}\right\}} J_{I_{1} l_{3} l_{4}}^{2}=\frac{1}{4} N^{3}(N-1)^{2}(N+2)
$$

- Much smaller than in SYK model with $N_{\text {SYK }}=N^{3}$

$$
\frac{1}{24} N^{3}\left(N^{3}-1\right)\left(N^{3}-2\right)\left(N^{3}-3\right)
$$

Schwinger-Dyson Equations

- Some are the same as in the SYK model kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh

$$
G\left(t_{1}-t_{2}\right)=G_{0}\left(t_{1}-t_{2}\right)+g^{2} N^{3} \int d t d t^{\prime} G_{0}\left(t_{1}-t\right) G\left(t-t^{\prime}\right)^{3} G\left(t^{\prime}-t_{2}\right)
$$

$$
-\mathrm{O}-=-
$$

- Neglecting the left-hand side in IR we find

$$
G\left(t_{1}-t_{2}\right)=-\left(\frac{1}{4 \pi g^{2} N^{3}}\right)^{1 / 4} \frac{\operatorname{sgn}\left(t_{1}-t_{2}\right)}{\left|t_{1}-t_{2}\right|^{1 / 2}}
$$

- Four point function

$$
\left\langle\psi^{a_{1} b_{1} c_{1}}\left(t_{1}\right) \psi^{a_{1} b_{1} c_{1}}\left(t_{2}\right) \psi^{a_{2} b_{2} c_{2}}\left(t_{3}\right) \psi^{a_{2} b_{2} c_{2}}\left(t_{4}\right)\right\rangle=N^{6} G\left(t_{12}\right) G\left(t_{34}\right)+\Gamma\left(t_{1}, \ldots, t_{4}\right)
$$

- If we denote by Γ_{n} the ladder with n rungs

$$
\begin{aligned}
\Gamma & \Gamma \sum_{n} \Gamma_{n} \\
\Gamma_{n+1}\left(t_{1}, \ldots, t_{4}\right) & =\int d t d t^{\prime} K\left(t_{1}, t_{2} ; t, t^{\prime}\right) \Gamma_{n}\left(t, t^{\prime}, t_{3}, t_{4}\right) \\
K\left(t_{1}, t_{2} ; t_{3}, t_{4}\right) & =-3 g^{2} N^{3} G\left(t_{13}\right) G\left(t_{24}\right) G\left(t_{34}\right)^{2}
\end{aligned}
$$

Spectrum of two-particle operators

- S-D equation for the three-point function Gross, Rosenhaus

$$
v\left(t_{0}, t_{1}, t_{2}\right)=\left\langle O_{2}^{n}\left(t_{0}\right) \psi^{a b c}\left(t_{1}\right) \psi^{a b c}\left(t_{2}\right)\right\rangle=\frac{\operatorname{sgn}\left(t_{1}-t_{2}\right)}{\left|t_{0}-t_{1}\right|^{h}\left|t_{0}-t_{2}\right|^{h}\left|t_{1}-t_{2}\right|^{1 / 2-h}}
$$

- Scaling dimensions of operators $O_{2}^{n}=\psi^{a b c}\left(D_{t}^{n} \psi\right)^{a b c}$

$$
g(h)=-\frac{3}{2} \frac{\tan \left(\frac{\pi}{2}\left(h-\frac{1}{2}\right)\right)}{h-1 / 2}=1
$$

- The first solution is $\mathrm{h}=2$; dual to dilaton gravity.

- The higher scaling dimensions are
$h \approx 3.77,5.68,7.63,9.60$ approaching $h_{n} \rightarrow n+\frac{1}{2}$

Gauge Invariant Operators

- Bilinear operators related by the EOM to some of the higher particle "single-sum" operators.

- All the 6-particle operators vanish by
 the Fermi statistics in the theory of one Majorana tensor

- The bubbles come from $\mathrm{O}(\mathrm{N})$ charges and vanish in the gauged model:

- The 17 single-sum 8-particle operators which do not include bubble insertions are

Factorial Growth

- There are 24 bubble-free 10-particle; 617 12particle; 4887 14-particle; 82466 16-particle operators; etc.
- The number of (2k)-particle operators grows asymptotically as $\mathrm{k}!2^{\mathrm{k}}$. Bulycheva, IK, Milekhin, Tarnopolsky
- The Hagedorn temperature of the large N theory vanishes as $1 / \log \mathrm{N}$.
- The tensor models seem to lie "beyond string theory."
- Are they related to M-theory?

Spectra of Energy Eigenstates

- Generalize the Majorana tensor model to have

$O\left(N_{1}\right) \times O\left(N_{2}\right) \times O\left(N_{3}\right)$ symmetry

- The traceless Hamiltonian is

$$
\begin{gathered}
H=\frac{g}{4} \psi^{a b c} \psi^{a b^{\prime} c^{\prime}} \psi^{a^{\prime} b c^{\prime}} \psi^{a^{\prime} b^{\prime} c}-\frac{g}{16} N_{1} N_{2} N_{3}\left(N_{1}-N_{2}\right) \\
\left\{N^{a b c}, \psi^{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}} \\
a=1, \ldots, N_{1} ; b=1, \ldots, N_{2} ; c=1, \ldots, N_{3}
\end{gathered}
$$

- The Hilbert space has dimension $2^{\left[N_{1} N_{2} N_{3} / 2\right]}$
- Eigenstates of H form irreducible representations of the symmetry.

Complete Diagonalizations

- Generally possible only for small ranks. krishnan, Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, Stanford, Tarnopolsky
- For example ıк, Milekhin, Popov, Tarnopolsky

Figure 1: Spectrum of the $O(4)^{2} \times O(2)$ model. There are four singlet states, and the stars mark their energies.
$\pm 16 g$ and $\pm 4 g$

- Spectra for $\mathrm{N}_{3}=2$
- For the $\mathrm{O}(2)^{3}$ model only two singlets at energies -2 g and 2 g .

$\left(N_{1}, N_{2}\right)$	$(2,2)$	$(2,3)$	$(3,3)$	$(2,4)$	$(3,4)$	$(4,4)$
${ }_{9}^{4} E_{\text {degeneracy }}$	$\begin{gathered} -8_{1} \\ 0_{14} \\ 8_{1} \end{gathered}$	-13_{2}	-20_{6}	-24_{1}	-34_{6}	-64
		-7_{6}	-16_{18}	-16_{2}	-28_{24}	-48_{55}
		-3_{2}	-12_{16}	-12_{16}	-24_{8}	-40_{106}
		-1_{22}	-8_{60}	-823	-22_{76}	-36256
		1_{22}	-4_{42}	-4_{16}	-20_{40}	-32_{810}
		32	0_{228}	0_{140}	-18_{14}	-28256
		76	4_{42}	4_{16}	-16152	-24_{3250}
		76 13 13	860	8_{23}	-14_{168}	-20_{1024}
			$\begin{gathered} 12_{16} \\ 16_{18} \\ 20_{6} \end{gathered}$	12_{16}	-12_{40}	-16_{4985}
				16_{2}	-10_{170}	-12_{3072}
				24_{1}	-8_{240}	-88932
					-6_{194}	-43584
					-4_{384}	0_{12874}
					-2_{270}	43584
					0_{248}	8_{8932}
					2_{640}	12_{3072}
					4384	16_{4985}
					6_{76}	20_{1024}
					8_{312}	24_{3250}
					10_{216}	28_{256}
					14_{32}	32_{810}
					16_{128}	36_{256}
					18_{168}	40_{106}
					20_{64}	48_{55}
					26_{10}	64_{1}
					28_{24}	
					30_{6}	
					38_{2}	

Energy Bounds

- The bound on the singlet ground state energy IK, Milekhin, Popov, Tarnopolsky

$$
|E| \leq E_{\text {bound }}=\frac{g}{16} N^{3}(N+2) \sqrt{N-1}
$$

- In the melonic limit, this correctly scales as N^{3}.
- The gap to the lowest non-singlet state scales as $1 / \mathrm{N}$.
- For unequal ranks the bound is

$$
|E| \leq \frac{g}{16} N_{1} N_{2} N_{3}\left(N_{1} N_{2} N_{3}+N_{1}^{2}+N_{2}^{2}+N_{3}^{2}-4\right)^{1 / 2}
$$

A Fermionic Matrix Model

- For $\mathrm{N}_{3}=2$ the bound simplifies to

$$
|E|_{N_{3}=2} \leq \frac{g}{8} N_{1} N_{2}\left(N_{1}+N_{2}\right)
$$

- Saturated by the ground state.
- This is a fermionic matrix model with symmetry

$$
\begin{aligned}
& O\left(N_{1}\right) \times O\left(N_{2}\right) \times U(1) \\
& \bar{\psi}_{a b}=\frac{1}{\sqrt{2}}\left(\psi^{a b 1}+i \psi^{a b 2}\right), \quad \psi_{a b}=\frac{1}{\sqrt{2}}\left(\psi^{a b 1}-i \psi^{a b 2}\right) \\
& \left\{\bar{\psi}_{a b}, \bar{\psi}_{a^{\prime} b^{\prime}}\right\}=\left\{\psi_{a b}, \psi_{a^{\prime} b^{\prime}}\right\}=0, \quad\left\{\bar{\psi}_{a b}, \psi_{a^{\prime} b^{\prime}}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}}
\end{aligned}
$$

- The traceless Hamiltonian is
$H=\frac{g}{2}\left(\bar{\psi}_{a b} \bar{\psi}_{a b^{\prime}} \psi_{a^{\prime} b} \psi_{a^{\prime} b^{\prime}}-\bar{\psi}_{a b} \bar{\psi}_{a^{\prime} b} \psi_{a b^{\prime}} \psi_{a^{\prime} b^{\prime}}\right)+\frac{g}{8} N_{1} N_{2}\left(N_{2}-N_{1}\right)$
- May be expressed in terms of quadratic Casimirs

$$
-\frac{g}{2}\left(4 C_{2}^{S U\left(N_{1}\right)}-C_{2}^{S O\left(N_{1}\right)}+C_{2}^{S O\left(N_{2}\right)}+\frac{2}{N_{1}} Q^{2}+\left(N_{2}-N_{1}\right) Q-\frac{1}{4} N_{1} N_{2}\left(N_{1}+N_{2}\right)\right)
$$

$S U\left(N_{1}\right) \times S U\left(N_{2}\right)$ is not a symmetry here but a spectrum generating algebra.

- For all N_{1}, N_{2}, the energy levels are integers in units of $\mathrm{g} / 4$.

Gauge Singlets

- To eliminate large degeneracies, focus on the states invariant under $S O\left(N_{1}\right) \times S O\left(N_{2}\right) \times S O\left(N_{3}\right)$
- Their number can be found by gauging the free theory

$$
L=\psi^{I} \partial_{t} \psi^{I}+\psi^{I} A_{I J} \psi^{J}
$$

$$
A=A^{1} \otimes \mathbb{1} \otimes \mathbb{1}+\mathbb{1} \otimes A^{2} \otimes \mathbb{1}+\mathbb{1} \otimes \mathbb{1} \otimes A^{3}
$$

$$
\# \text { singlet states }=\int d \lambda_{G}^{N} \prod_{a=1}^{M / 2} 2 \cos \left(\lambda_{a} / 2\right)
$$

$$
d \lambda_{S O(2 n)}=\prod_{i<j}^{n} \sin \left(\frac{x_{i}-x_{j}}{2}\right)^{2} \sin \left(\frac{x_{i}+x_{j}}{2}\right)^{2} d x_{1} \ldots d x_{n}
$$

Gauge Singlets in the $\mathrm{O}(\mathrm{N})^{3}$ Model

- Their number vanishes for odd N due to a QM anomaly for odd numbers of flavors.
- Grows very rapidly for even N

N	$\#$ singlet states
2	2
4	36
6	595354780

Table 1: Number of singlet states in the $O(N)^{3}$ model

$$
\# \text { singlet states } \sim \exp \left(\frac{N^{3}}{2} \log 2-\frac{3 N^{2}}{2} \log N+O\left(N^{2}\right)\right)
$$

- The large low-temperature entropy suggests tiny gaps for singlet excitations $\sim c^{-N^{3}}$

Qubit Hamiltonian

- Convenient to introduce operator basis which breaks the third $\mathrm{O}(\mathrm{N})$ to $\mathrm{U}(\mathrm{N} / 2)$

$$
\begin{gathered}
\bar{c}_{a b k}=\frac{1}{\sqrt{2}}\left(\psi^{a b(2 k)}+i \psi^{a b(2 k+1)}\right), \quad c_{a b k}=\frac{1}{\sqrt{2}}\left(\psi^{a b(2 k)}-i \psi^{a b(2 k+1)}\right), \\
\left\{c_{a b k}, c_{a^{\prime} b^{\prime} k^{\prime}}\right\}=\left\{\bar{c}_{a b k}, \bar{c}_{a^{\prime} b^{\prime} k^{\prime}}\right\}=0, \quad\left\{\bar{c}_{a b k}, c_{a^{\prime} b^{\prime} k^{\prime}}\right\}=\delta_{a a^{\prime}} \delta_{b b} \delta_{k k^{\prime}}, \\
a, b=0,1, \ldots, N-1, \text { and } k=0, \ldots, \frac{1}{2} N-1
\end{gathered}
$$

- Operators $c_{a b k}, \bar{c}_{a b k}$ correspond to qubit number $N^{2} k+N b+a$
- The Hamiltonian couples $N / 2$ sets of N^{2} qubits

$$
H=2\left(\bar{c}_{a b k} \bar{c}_{a b^{\prime} k^{\prime}} c_{a^{\prime} b k^{\prime}} c_{a^{\prime} b^{\prime} k}-\bar{c}_{a b k} \bar{c}_{a^{\prime} b k^{\prime}} c_{a b^{\prime} k^{\prime}} c_{a^{\prime} b^{\prime} k}\right)
$$

- The Cartan generators of $\mathrm{U}(\mathrm{N} / 2)$ are

$$
Q_{k}=\sum_{a, b} \frac{1}{2}\left[\bar{c}_{a b k}, c_{a b k}\right], \quad k=0, \ldots, \frac{1}{2} N-1
$$

- For the oscillator vaccuum

$$
c_{a b k}|\mathrm{vac}\rangle=0, \quad Q_{k}|\mathrm{vac}\rangle=-\frac{N^{2}}{2}|\mathrm{vac}\rangle
$$

- The gauge singlet states appear in the sector where all these charges vanish: each set of N^{2} qubits is at half filling.
- This reduces the number of states but it still grows rapidly. For N=4 there are 165636900, while for $\mathrm{N}=6$ over 7.47 * 10^29

Spectrum of the Gauged $\mathrm{N}=4$ Model

- Studied the system of $32=16+16$ qubits

IK, K. Pakrouski, F. Popov and G. Tarnopolsky

- Needed to isolate the 36 states invariant under SO(4) ${ }^{3}$ out of the 165080390 "half-half-filled" states.
- Diagonalize $4 \mathrm{H} / \mathrm{g}+100 \mathrm{C}$ where C is the sum of three Casimir operators.
- A Lanczos type algorithm is well suited for this sparse operator.
- Find 15 distinct $\mathrm{SO}(4)^{3}$ invariant energy levels: $E=0$ and 7 "mirror pairs" ($\mathrm{E},-\mathrm{E}$).

Discrete Symmetries

- Act within the $\mathrm{SO}(\mathrm{N})^{3}$ invariant sector and can lead to small degeneracies.
- Z_{2} parity transformation within each group like

$$
\psi^{1 b c} \rightarrow-\psi^{1 b c}
$$

- Interchanges of the groups flip the energy

$$
\begin{array}{cl}
P_{23} \psi^{a b c} P_{23}=\psi^{a c b}, & P_{12} \psi^{a b c} P_{12}=\psi^{b a c} \\
P_{23} H P_{23}=-H, & P_{12} H P_{12}=-H
\end{array}
$$

- Z_{3} symmetry generated by $P=P_{12} P_{23}, \quad P^{3}=1$

$$
P \psi^{a b c} P^{\dagger}=\psi^{c a b}, \quad P H P^{\dagger}=H
$$

- At non-zero energy the gauge singlet states transform under the group $A_{4} \times Z_{2}$.
- The 36 states are labeled by E and the three parities

E	P_{1}	P_{2}	P_{3}	E	P_{1}	P_{2}	P_{3}
-160.140170	1	1	1	160.140170	1	1	1
-97.019491	1	1	-1	97.019491	1	1	-1
-97.019491	-1	1	1	97.019491	-1	1	1
-97.019491	1	-1	1	97.019491	1	-1	1
-88.724292	-1	-1	-1	88.724292	-1	-1	-1
-54.434603	1	1	1	54.434603	1	1	1
-50.549167	1	1	-1	50.549167	1	1	-1
-50.549167	-1	1	1	50.549167	-1	1	1
-50.549167	1	-1	1	50.549167	1	-1	1
-39.191836	1	1	1	39.191836	1	1	1
-39.191836	1	1	1	39.191836	1	1	1
-38.366652	1	-1	-1	38.366652	1	-1	-1
-38.366652	-1	1	-1	38.366652	-1	1	-1
-38.366652	-1	-1	1	38.366652	-1	-1	1
0.000000	1	1	1	0.000000	-1	-1	-1
0.000000	-1	1	1	0.000000	1	-1	-1
0.000000	1	-1	1	0.000000	-1	1	-1
0.000000	1	1	-1	0.000000	-1	-1	1

Energy Distribution for $\mathrm{N}=4$

- For $\mathrm{N}=6$ there will be over 595 million states packed into energy interval <1932. So, the gaps will be tiny.

Exact Eigenvalues

- The maximum degeneracy at non-zero energy is 3 .
- The results were so precise that they allowed us to deduce the exact expressions in terms of square root.
- The ground state is non-degenerate and has energy in units of $g / 4$

$$
E_{0}=-\sqrt{32(447+\sqrt{125601})}
$$

- It is not far from our lower bound -166.277

Complex Tensor Model

- The action
$S=\int d t\left(i \bar{\psi}^{a b c} \partial_{t} \psi^{a b c}+\frac{1}{4} g \psi^{a_{1} b_{1} c_{1}} \bar{\psi}^{a_{1} b_{2} c_{2}} \psi^{a_{2} b_{1} c_{2}} \bar{\psi}^{a_{2} b_{2} c_{1}}\right)$
has $\mathrm{SU}(\mathrm{N}) \mathrm{xO}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N}) \mathrm{xU}(1)$ symmetry.
IK, Tarnopolsky
- Gauge invariant two-particle operators

$$
\mathcal{O}_{2}^{n}=\bar{\psi}^{a b c}\left(D_{t}^{n} \psi\right)^{a b c} \quad n=0,1, \ldots
$$

including $\bar{\psi}^{a b c} \psi^{a b c}$

Spectrum of two-particle operators

- The integral equation also admits symmetric solutions

$$
v\left(t_{1}, t_{2}\right)=\frac{1}{\left|t_{1}-t_{2}\right|^{1 / 2-h}}
$$

- Calculating the integrals we get

$$
g_{\mathrm{sym}}(h)=-\frac{1}{4 \pi} l_{\frac{3}{2}-h, \frac{1}{2}}^{-} l_{1-h, \frac{1}{2}}^{+}=-\frac{1}{2} \frac{\tan \left(\frac{\pi}{2}\left(h+\frac{1}{2}\right)\right)}{h-1 / 2}
$$

- The first solution is $\mathrm{h}=1$ corresponding to $\mathrm{U}(1)$ charge $\bar{\psi}^{a b c} \psi^{a b c}$

- The additional scaling dimensions

$$
h \approx 2.65,4.58,6.55,8.54
$$

approach $\quad h_{n}=n+\frac{1}{2}+\frac{1}{\pi n}+\mathcal{O}\left(n^{-3}\right)$

Sachdev-Ye-Kitaev Model

$\mathrm{O}(\mathrm{N})^{3}$ Tensor Model

$H=\frac{1}{4!} \sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{N} J_{i_{1} i_{2} i_{3} i_{4}} \chi_{i_{1}} \chi_{i_{2}} \chi_{i_{3}} \chi_{i_{4}}$

- Majorana fermions $\left\{\chi_{i}, \chi_{j}\right\}=\delta_{i j}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random $\left\langle J_{i_{1} i_{2} i_{3 i} i_{4}}^{2}\right\rangle=3!\frac{J^{2}}{N^{3}}\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0$
- Has $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right)$ symmetry after averaging over disorder

Sachdev, Ye ‘93,
 Georges, Parcollet, Sachdev’01 Kitaev '15
$H=\frac{1}{4} \sum_{a_{1}, \ldots, c_{2}=1}^{N} \frac{J}{N^{3 / 2}} \chi_{a_{1} b_{1} c_{1}} \chi_{a_{1} b_{2} c_{2}} \chi_{a_{2} b_{1} c_{2}} \chi_{a_{2} b_{2} c_{1}}$

- Majorana fermions

$$
\left\{\chi_{a b c}, \chi_{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}} \delta_{c c^{\prime}}
$$

- No disorder
- Has $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \mathrm{x} O(\mathrm{~N})_{\mathrm{b}} \mathrm{x} O(\mathrm{~N})_{\mathrm{c}}$ symmetry

Gross-Rosenhaus Model

$$
\mathrm{q}=4, \mathrm{f}=4
$$

Gurau-Witten Model

$$
H=\sum_{a, \ldots, f=1}^{N} \frac{J}{N^{3 / 2}} \chi_{a b c}^{0} \chi_{a d e}^{1} \chi_{f b e}^{2} \chi_{f d c}^{3}
$$

- Majorana fermions $\left\{\chi_{i}^{a}, \chi_{j}^{b}\right\}=\delta_{i j} 0^{a b}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random

$$
\left\langle J_{i_{1} i_{2} i_{3} i_{4}}^{2}\right\rangle=4^{4} \frac{J^{2}}{N^{3}}\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0
$$

- Has $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x} \mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x}$
- $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x} O\left(\mathrm{~N}_{\mathrm{SYK}}\right)$ symmetry

Gross, Rosenhaus’ 16

- Majorana fermions

$$
\left\{\chi_{a b c}^{A}, \chi_{a^{\prime} b^{\prime} c^{\prime}}^{B}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}} \delta_{c c^{\prime}} \delta^{A B}
$$

- No disorder
- Has $O(N)_{a} x^{x} O(N)_{b} x O(N)_{c} x O(N)_{d}$ x $O(N)_{e} x$ O(N) $)_{f}$ symmetry

Gurau '10
Witten'16

Complex SYK Model

Complex Tensor Model

$H=\frac{1}{4!} \sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{N} J_{i_{1} i_{2} i_{3} i_{4}} \chi_{i_{1}}^{\dagger} \chi_{i_{2}}^{\dagger} \chi_{i_{3}} \chi_{i_{4}}$

- Complex fermions $\left\{\chi_{i}, \chi_{j}^{\dagger}\right\}=\delta_{i j}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random

$$
\left\langle J_{i_{1} i_{2} i_{3} i_{4}}^{2}\right\rangle=3!\frac{J^{2}}{N^{3}} \quad\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0
$$

- Has $\mathrm{U}\left(\mathrm{N}_{\mathrm{SYK}}\right)$ symmetry after averaging over disorder

Sachdev '15

Conclusions

- The vector and matrix large N limits have been used extensively for many years in various theoretical physics problems.
- The tensor large N limits for rank 3 and higher are relatively new.
- The $\mathrm{O}(\mathrm{N})^{3}$ fermionic tensor quantum mechanics seems to be the closest counterpart of the basic SYK model for Majorana fermions. Yet, there are some important differences between the two.
- Gauging the $\mathrm{SO}(\mathrm{N})^{3}$ symmetry leaves interesting spectra of operators and eigenstates.
- Found the complete spectrum of the gauged $\mathrm{N}=4$ model, where there are 36 states.
- Energy gaps should become very small already for $\mathrm{N}=6$, where there are over 595 million states.
- Vector: CFTs are dual to higher spin quantum gravity in AdS; e.g. the O(N) Wilson-Fisher Model coupled to Chern-Simons is dual to the Vasiliev theory in AdS_{4}. One Regge trajectory.
- Matrix: $\mathcal{N}=4$ Super-Yang-Mills is dual string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. An infinite number of Regge trajectories.
- Tensor: Vastly more operators than in the matrix case. Hagedorn temperature vanishes for large N.
What quantum gravity theories are they dual to?

