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• Based in part on 
IK, Fedor Popov, Grigory Tarnopolsky, 
“TASI Lectures on Large N Tensor Models,”   
arXiv: 1808.09434



Three Large N Limits
• O(N) Vector: solvable because the bubble 

diagrams can be summed.
• Matrix (‘t Hooft) Limit: planar diagrams. 

Solvable only in special cases.
• Tensor of rank three and higher. When 

interactions are specially chosen, dominated 
by the “melonic” diagrams. Bonzom, Gurau, Riello,
Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky



O(N) x O(N) Matrix Model

• Theory of real matrices φab with distinguishable 
indices, i.e. in the bi-fundamental 
representation of O(N)axO(N)b symmetry. 

• The interaction is at least quartic: g tr φφTφφT

• Propagators are represented by colored double 
lines, and the interaction vertex is

• In d=0 or 1 special limits describe two-
dimensional quantum gravity.



• In the large N limit 
where gN is held fixed 
we find planar Feynman 
graphs, and each index 
loop may be red or 
green.

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green).



• For a 3-tensor with distinguishable indices the 
propagator has index structure

• It may be represented graphically by 3 colored 
wires 

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky

From Bi- to Tri-Fundamentals

The picture can't be displayed.



• Leading correction to the propagator has 3 
index loops

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.  

• Melonic graphs obtained by iterating   



Snails vs. Melons

• In large N vector models snail diagrams 
dominate.

• In matrix models both contribute.
• In tensor models with tetrahedral interactions 

the melons dominate. 



• The snail insertion scales as
• The melon insertion as
• The melonic dominance would not hold if we 

adopted the “pillow interactions”  

instead of the tetrahedral



Cables and Wires
• The Feynman graphs of the quartic field 

theory may be resolved in terms of the 
colored wires (triple lines)



• Most Feynman graphs in the quartic field theory 
are not melonic are therefore subdominant in the 
new large N limit, e.g.

• Scales as
• None of the graphs with an odd number of 

vertices are melonic.

Non-Melonic Graphs



• Here is the list of snail-free vacuum graphs up 
to 6 vertices Kleinert, Schulte-Frohlinde

• Only 4 out of these 27 graphs are melonic.
• The number of melonic graphs with p vertices 

grows as Cp Bonzom, Gurau, Riello, Rivasseau



• ‘’Forgetting ” one  color we get a double-line 
graph.

• The number of loops in a double-line graph is                     
where      is the Euler characteristic,

is the number of edges, and     is the number of 
vertices, 

• If we erase the blue lines we get 

Large N Scaling



• Adding up such formulas, we find

• The total number of index loops is

• The genus of a graph is
• Since           , for a “maximal graph” which 

dominates at large N all its subgraphs must 
have genus zero:

• Scales as
• In the 3-tensor models                       must be 

held fixed in the large N limit.



The Sachdev-Ye-Kitaev Model
• Quantum mechanics of a large number NSYK of 

anti-commuting variables with action

• Random couplings j  have a Gaussian 
distribution with zero mean. 

• The model flows to strong coupling and 
becomes nearly conformal.  Georges, Parcollet, Sachdev; 
Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon;
Kitaev, Suh 



• The simplest interesting case is q=4.
• Exactly solvable in the large NSYK limit because 

only the melon Feynman diagrams contribute

• Solid lines are fermion propagators, while 
dashed lines mean disorder average.

• The exact solution shows resemblance with 
physics of certain two-dimensional black 
holes. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; 

Engelsoy, Merten, Verlinde; Jensen; Kitaev, Suh; …



• Spectrum for a single realization of NSYK=32 
model with q=4. Maldacena, Stanford

• No exact degeneracies, but the gaps are 
exponentially small. Large low T entropy.



SYK-Like Tensor Quantum Mechanics

• E. Witten, “An SYK-Like Model Without 
Disorder,” arXiv: 1610.09758. 

• Appeared on the evening of Halloween: 
October 31, 2016.

• It is sometimes tempting to change the term 
“melon diagrams” to “pumpkin diagrams.”



The Gurau-Witten Model
• This model is called “colored” in the random 

tensor literature because the anti-commuting 3-
tensor fields              carry a label A=0,1,2,3.  

• Perhaps more natural to call it ”flavored.”
• The model has                symmetry with each 

tensor in a tri-fundamental under a different 
subset of the six symmetry groups.

• Contains 4N3 Majorana fermions.



• The 4 different fields may be associated with 4 
vertices of a tetrahedron, and the 6 edges 
correspond to the different symmetry groups:

• As stressed by Witten, it may be advantageous 
to gauge the SO(N)6 symmetry.

• This makes it a candidate gauge/gravity 
correspondence.



• A pruned version: there are N3 Majorana
fermions IK, Tarnopolsky

• Has O(N)axO(N)bxO(N)c symmetry under

• The SO(N) symmetry charges are

The O(N)3 Model



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron. 

• This is equivalent to

• The triple-line Feynman 
graphs are produced 
using the propagator



O(N)3 vs. SYK Model
• Using composite indices

The couplings take values 

• The number of distinct terms is

• Much smaller than in SYK model with 



Schwinger-Dyson Equations
• Some are the same as in the SYK model Kitaev; 

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh

• Neglecting the left-hand side in IR we find



• Four point function

• If we denote by       the ladder with n rungs



Spectrum of two-particle operators
• S-D equation for the three-point function Gross, 

Rosenhaus

• Scaling dimensions of operators  



• The first solution is h=2; dual to dilaton gravity.

• The higher scaling dimensions are
approaching             



Gauge Invariant Operators
• Bilinear operators related by the EOM to some 

of the higher particle “single-sum” operators. 

• All the 6-particle 
operators vanish by 
the Fermi statistics in 
the theory of one 
Majorana tensor



• The bubbles come from O(N) charges and 
vanish in the gauged model:

• The 17 single-sum 8-particle operators which 
do not include bubble insertions are 



Factorial Growth

• There are 24 bubble-free 10-particle; 617 12-
particle; 4887 14-particle; 82466 16-particle 
operators; etc. 

• The number of (2k)-particle operators grows 
asymptotically as k! 2k. Bulycheva, IK, Milekhin, Tarnopolsky

• The Hagedorn temperature of the large N 
theory vanishes as 1/log N.

• The tensor models seem to lie “beyond string 
theory.”

• Are they related to M-theory?



Spectra of Energy Eigenstates
• Generalize the Majorana tensor model to have

symmetry
• The traceless Hamiltonian is

• The Hilbert space has dimension
• Eigenstates of H form irreducible 

representations of the symmetry. 



Complete Diagonalizations
• Generally possible only for small ranks. Krishnan, 

Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, 
Stanford, Tarnopolsky

• For example IK, Milekhin, Popov, Tarnopolsky



• Spectra for N3=2
• For the O(2)3 model

only two singlets at 
energies -2g and 2g. 



Energy Bounds

• The bound on the singlet ground state energy 
IK, Milekhin, Popov, Tarnopolsky

• In the melonic limit, this correctly scales as N3.
• The gap to the lowest non-singlet state scales 

as 1/N.
• For unequal ranks the bound is



A Fermionic Matrix Model

• For N3=2 the bound simplifies to

• Saturated by the ground state.
• This is a fermionic matrix model with symmetry 



• The traceless Hamiltonian is

• May be expressed in terms  of quadratic 
Casimirs

is not a symmetry here but a  
spectrum generating algebra.
• For all N1, N2, the energy levels are integers in 

units of g/4.



Gauge Singlets
• To eliminate large degeneracies, focus on the 

states invariant under   
• Their number can be found by gauging the 

free theory 



Gauge Singlets in the O(N)3 Model
• Their number vanishes for odd N due to a QM 

anomaly for odd numbers of flavors.
• Grows very rapidly for even N

• The large low-temperature entropy suggests 
tiny gaps for singlet excitations ~ 



Qubit Hamiltonian
• Convenient to introduce operator basis which 

breaks the third O(N) to U(N/2)

• Operators                      correspond to qubit 
number

• The Hamiltonian couples N/2 sets of N2 qubits



• The Cartan generators of U(N/2) are

• For the oscillator vaccuum

• The gauge singlet states appear in the sector 
where all these charges vanish: each set of N2 

qubits is at half filling. 
• This reduces the number of states but it still 

grows rapidly. For N=4 there are 165636900, 
while for N=6 over 7.47 * 10^29



Spectrum of the Gauged N=4 Model
• Studied the system of 32=16+16 qubits 

IK, K. Pakrouski, F. Popov and G. Tarnopolsky

• Needed to isolate the 36 states invariant under 
SO(4)3 out of the 165080390 “half-half-filled” 
states.

• Diagonalize 4H/g + 100 C where C is the sum of 
three Casimir operators.

• A Lanczos type algorithm is well suited for this 
sparse operator.

• Find 15 distinct SO(4)3 invariant energy levels: 
E=0 and 7 “mirror pairs” (E, -E).



Discrete Symmetries
• Act within the SO(N)3 invariant sector and can 

lead to small degeneracies.
• Z2 parity transformation within each group like

• Interchanges of the groups flip the energy

• Z3 symmetry generated by                    ,



• At non-zero energy the gauge singlet states 
transform under the group A4 x Z2.

• The 36 states are labeled by E and the three 
parities



Energy Distribution for N=4

• For N=6 there will be over 595 million states 
packed into energy interval <1932. So, the 
gaps will be tiny.



Exact Eigenvalues

• The maximum degeneracy at non-zero energy 
is 3.

• The results were so precise that they allowed 
us to deduce the exact expressions in terms of 
square root.

• The ground state is non-degenerate and has 
energy in units of g/4 

• It is not far from our lower bound -166.277



Complex Tensor Model

• The action

has SU(N)xO(N)xSU(N)xU(1) symmetry. 
IK, Tarnopolsky

• Gauge invariant two-particle operators

including 



Spectrum of two-particle operators

• The integral equation also admits symmetric 
solutions 

• Calculating the integrals we get

• The first solution is h=1 corresponding to U(1) 
charge 



• The additional scaling dimensions  

approach 



Sachdev-Ye-Kitaev Model O(N)3 Tensor Model

• Majorana fermions

• No disorder 

• Has O(N)a x O(N)b x O(N)c symmetry

• Majorana fermions

• are Gaussian random

• Has O(NSYK) symmetry after 
averaging over disorder

Sachdev, Ye ‘93, 
Georges, Parcollet, Sachdev’01
Kitaev ‘15 IK, Tarnopolsky’16



• Majorana fermions

• are Gaussian random

• Has O(NSYK) x O(NSYK) x 
• O(NSYK) x O(NSYK) symmetry

• Majorana fermions

• No disorder 

• Has O(N)a x O(N)b x O(N)c x O(N)d
x O(N)e x O(N)f symmetry

Gross-Rosenhaus Model
q=4, f=4 Gurau-Witten Model

Gross, Rosenhaus’ 16 Gurau ‘10
Witten’16



• Complex fermions

• Has SU(N)a x SU(N)b x O(N)c x U(1) 
symmetry and no disorder

Complex SYK Model Complex Tensor Model

• Complex fermions

• are Gaussian random

• Has U(NSYK) symmetry after 
averaging over disorder 

Sachdev ’15
Davison, Fu, Gu, Georges, Jensen, Sachdev ‘16

IK, GT’16



Conclusions
• The vector and matrix large N limits have been 

used extensively for many years in various 
theoretical physics problems. 

• The tensor large N limits for rank 3 and higher 
are relatively new.  

• The O(N)3 fermionic tensor quantum 
mechanics seems to be the closest 
counterpart of the basic SYK model for 
Majorana fermions. Yet, there are some 
important differences between the two.



• Gauging the SO(N)3 symmetry leaves 
interesting spectra of operators and 
eigenstates. 

• Found the complete spectrum of the gauged 
N=4 model, where there are 36 states.

• Energy gaps should become very small already 
for N=6, where there are over 595 million 
states.



• Vector: CFTs are dual to higher spin quantum 
gravity in AdS; e.g. the O(N) Wilson-Fisher Model 
coupled to Chern-Simons is dual to the Vasiliev
theory in AdS4. One Regge trajectory.

• Matrix: N=4 Super-Yang-Mills is dual string theory 
on AdS5 x S5. An infinite number of Regge
trajectories.   

• Tensor: Vastly more operators than in the matrix 
case. Hagedorn temperature vanishes for large N.
What quantum gravity theories are they dual to?
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