
We need “pV=nRT” for climate
                                    ( J. Harte, May 6, 2008 )  

Greg Holloway

Institute of Ocean Sciences
Sidney BC Canada



Outline
1. Conceptual overview
2. Implementation of ideas
3. Modelling results
4. Observations

Overview -- the problem:   
Oceans, lakes and (most) duck ponds are too big.

See 1024 to 1030 excited degrees of freedom.  Get a 
bigger computer?  Even biggees care state vectors 
of maybe 1010.  For every variable resolved, one 
must guess dependence 1015 unknowns.  Rethink! 



Back to basics: what are the equations of motion?
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Dependent variables as expectations:

y=state vector (temp, salin, veloc, ...)      [y]~1030

for this y textbooks give us dy/dt=f(y)+g

dp=p(y)dy :  probability actual y´ within dy of y

expectations Y=∫ydp, R=∫r(y)dp.   [Y] can be small

dY/dt=F(Y)+G+“more”.  “more” because F≠∫fdp

what to do about “more”?   

3. Modelling results
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Dependent variables as expectations:

y=state vector (temp, salin, veloc, ...)      [y]~1030

for this y textbooks give us dy/dt=f(y)+g

dp=p(y)dy :  probability actual y´ within dy of y

expectations Y=∫ydp, R=∫r(y)dp.   [Y] can be small

dY/dt=F(Y)+G+“more”.  “more” because F≠∫fdp

what to do about “more”?   entropy H=-∫dp log(p)

3. Modelling results
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three choices:
a)  forget d/dt, forcing, dissip.  let Y maximise H

b) “more” are such to maximise production of H

c) “entropic force”:  dY/dt=F(Y)+G + C·∂YH

C·∂YH has two parts: C and ∂YH.  n.b: “accessible”

C·∂YH ~ C·∂Y∂YH·(Y-Y*)=K·(Y-Y*) where 

Y* only needs be evaluated at “small” ∂YH

                                        (n.b: you still need K)

3. Modelling results



Wooly words! See explicit e.g.

  K·(Y-Y*) with  Y*=-fL2D,  K=A     :   “neptune”

� 

∇2

� 

∂t∇
2ψ + J ψ ,∇2ψ + h( ) = ...







Arctic Ocean Models Intercomparison Project:  To compare models,  
T and S are simple.  Average, make heat or “freshwater” storage, etc.  
What to do about V?  

Define “topostrophy”
                        ,  a 
scalar that averages 
like T or S.  Normalize 

then

� 

τ ≡ f × V ⋅∇D

� 

τ ≡
f × V ⋅∇D

f × V 2 ∇D 2

� 

−1≤ τ ≤ +1

Arctic observers refer to prevalent “cyclonic rim currents”, large +  

� 

τ
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Interesting, but what is observed? 
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Can we estimate topostrophy from current meter records? 
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17120 CM records, 83087 months later ...
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All latitudes,  vs. relative depth



All latitudes,  vs. relative depth



Topostrophy vs. latitude and relative depth
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1) entropy (-∫log(p)dp) is “starved” at short scales

2) simplest enstrophy

3) organizing a little              (losing entropy)

4) generates       (=short scales, gaining entropy)

5) hence “entropic forcing”  drives

                  or                             or 

� 

ζ + h( )2 = ζ 2 + 2ζh + h2

� 

ζh < 0

� 

ζ 2

� 

ζ ⇒ −h

� 

V⇒−f × ∇D

� 

τ > 0

 In plain words --



 change subject, change scale, change physics:

        
 1. internal waves => “buoyancy range” => “turbulence” => dissip 

 2. where does downward buoyancy mixing occur?
     puzzle: persistent countergradient fluxes (“PCG”s) --  why?



one integral:  total (KE + PE) energy = waves + vortical energy

Y*:  at each !,"  wave energy = 2x vortical, KE = 2x PE

with forcing & dissip, much more energy at low !,"

C·!YH meets 2 demands:  1) transfer energy to high !,"

2) seek KE = 2x PE at each !,"

transfer depends on 
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transfer of veloc variance (KE) is less efficient than tracer var (PE), 

KE > 2xPE at lower !," , KE < 2xPE at higher !,"

vertical buoyancy flux F=w’b’ converts:  !tKE = - !tPE = F
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 Figure 4.  FT and FS corresponding to Fig. 3.
.



Summary
1. See dependent variables as expectations
2. Entropy gradients force expectations
3. E.g: eddy forcing mean flow along slopes

  with secondary upwelling
    E.g: internal waves / vortical => mixing

with persistent countergrad fluxes
 

Outlook
1. Work at less fudge
2. Alternatives (max entropy production, ...?)
3. Further applications (sea ice, ...?)





Examples from nanoworld (colloids, ‘machines’, 
microbiol):  The only explicit physics is repulsion  
among balls, and from walls.   “See” attraction.  
“Entropic forcing” in the lab!


