We need "pV=nRT" for climate (J. Harte, May 6, 2008)

Greg Holloway

Institute of Ocean Sciences Sidney BC Canada

Outline

- 1. Conceptual overview
- 2. Implementation of ideas
- 3. Modelling results
- 4. Observations

Overview -- the problem:

Oceans, lakes and (most) duck ponds are too big.

See 10^{24} to 10^{30} excited degrees of freedom. Get a bigger computer? Even biggees care state vectors of maybe 10^{10} . For every variable resolved, one must guess dependence 10^{15} unknowns. Rethink!

Back to basics: what are the equations of motion?

Back to basics: what are the **equations of motion?**Back to *even more basic*: **motion of what?**

Back to basics: what are the **equations of motion?**Back to *even more basic*: **motion of what?**

Dependent variables as expectations:

y=state vector (temp, salin, veloc, ...) [y]~10³⁰ for this y textbooks give us dy/dt=f(y)+gdp=p(y)dy: probability actual y' within dy of y expectations $Y = \int y dp$, $R = \int r(y) dp$. [Y] can be small dY/dt=F(Y)+G+"more". "more" because $F\neq \int fdp$ what to do about "more"?

Back to basics: what are the **equations of motion?**Back to *even more basic*: **motion of what?**

Dependent variables as expectations:

y=state vector (temp, salin, veloc, ...) [y]~10³⁰ for this y textbooks give us dy/dt=f(y)+gdp=p(y)dy: probability actual y' within dy of y expectations $Y = \int y dp$, $R = \int r(y) dp$. [Y] can be small dY/dt=F(Y)+G+"more". "more" because $F\neq \int fdp$ what to do about "more"? entropy H=-Jdp log(p)

three choices:

- a) forget d/dt, forcing, dissip. let Y maximise H
- b) "more" are such to maximise production of H
- c) "entropic force": dY/dt=F(Y)+G+

three choices:

- a) forget d/dt, forcing, dissip. let Y maximise H
- **b**) "more" are such to maximise production of H
- c) "entropic force": $dY/dt=F(Y)+G+C\cdot\partial_YH$

three choices:

- a) forget d/dt, forcing, dissip. let Y maximise H
- **b**) "more" are such to maximise production of H
- c) "entropic force": $dY/dt=F(Y)+G+C\cdot\partial_YH$

 $\mathbf{C} \cdot \partial_{\mathbf{Y}} \mathbf{H}$ has two parts: \mathbf{C} and $\partial_{\mathbf{Y}} \mathbf{H}$. n.b: "accessible"

 $\mathbf{C} \cdot \partial_{\mathbf{Y}} \mathbf{H} \sim \mathbf{C} \cdot \partial_{\mathbf{Y}} \partial_{\mathbf{Y}} \mathbf{H} \cdot (\mathbf{Y} - \mathbf{Y}^*) = \mathbf{K} \cdot (\mathbf{Y} - \mathbf{Y}^*)$ where

 Y^* only needs be evaluated at "small" $\partial_Y H$

(n.b: you still need **K**)

Wooly words! See explicit *e.g.* $\partial_t \nabla^2 \psi + J(\psi, \nabla^2 \psi + h) = \dots$

expand
$$\psi=\sum \psi_n(t)\phi_n$$
 , $h=\sum h_n\phi_n$ on eigenfunctions $\nabla^2\phi_n+q_n^2\phi_n=0$

Conserved quadratics are
$$E = \frac{1}{2} \sum q_n^2 |\psi_n|^2$$
 and $\Omega = \frac{1}{2} \sum \left| -q_n^2 \psi_n + h_n \right|^2$ (circulation=0 here)

Maximise
$$S = -\int dp \log p$$
 subject to $\langle E \rangle = E_0$, $\langle \Omega \rangle = \Omega_0$ and $\langle 1 \rangle = 1$.

$$\delta \int \mathbf{dx} (p \log p + \alpha E p + \beta \Omega p + \gamma p) = 0 \quad \text{hence} \quad \log p + 1 + \alpha E + \beta \Omega + \gamma = 0$$

$$p = \exp\{-1 - \gamma\} \exp\{-\sum \left\{q_n^2 \left(\alpha + \beta q_n^2\right) \left|\psi_n\right|^2 - 2\beta q_n^2 \operatorname{Re} \psi_n h_n + \beta \left|h_n\right|^2\right\}\right\}$$

$$= \Gamma \exp \left\{ -\sum_{n} q_n^2 \left(\alpha + \beta q_n^2 \right) \left| \psi_n - \hat{\psi}_n \right|^2 \right\} \text{ where } \hat{\psi}_n = \beta h_n / \left(\alpha + \beta q_n^2 \right) \text{ or } \left(\alpha / \beta - \nabla^2 \right) \hat{\psi} = h$$

If resolved scales are larger than $\lambda = \sqrt{\beta/\alpha}$, drop ∇^2 and simply $\hat{\psi} = \lambda^2 h$

 $\mathbf{K} \cdot (\mathbf{Y} - \mathbf{Y}^*)$ with $\mathbf{Y}^* = -\mathbf{f} \mathbf{L}^2 \mathbf{D}$, $\mathbf{K} = A\nabla^2$: "neptune"

The Global Ocean Conveyor Belt

Arctic Ocean Models Intercomparison Project: To compare models, T and S are simple. Average, make heat or "freshwater" storage, etc. What to do about **V**?

20 Define "topostrophy" $\tau \equiv \mathbf{f} \times \mathbf{V} \cdot \nabla D$, a scalar that averages like T or S. Normalize 120 $-1 \le \tau \le +1$ 140 then 160 180

Arctic observers refer to prevalent "cyclonic rim currents", large + τ

110

Topostrophy averaged over Eurasian basin Eurasian

Interesting, but what is observed?

Can we estimate topostrophy from current meter records?

17120 CM records, 83087 months later ...

vs latitude nonuniform bins, here omitting top 500m

vs latitude nonuniform bins, here omitting top 500m

All latitudes, vs. relative depth

All latitudes, vs. relative depth

Topostrophy vs. latitude and relative depth

Topostrophy averaged over Eurasian basin Eurasian

Interesting, but what is observed?

In plain words ---

- 1) entropy (-\int log(p)dp) is "starved" at short scales
- 2) simplest enstrophy $(\zeta + h)^2 = \zeta^2 + 2\zeta h + h^2$
- 3) organizing a little $\zeta h < 0$ (losing entropy)
- 4) generates ζ^2 (=short scales, gaining entropy)
- 5) hence "entropic forcing" drives $\zeta \Rightarrow -h$

or
$$\mathbf{V} \Rightarrow -\mathbf{f} \times \nabla D$$
 or $\tau > 0$

change subject, change scale, change physics:

- 1. internal waves => "buoyancy range" => "turbulence" => dissip
- 2. where does downward buoyancy mixing occur? puzzle: persistent countergradient fluxes ("PCG"s) -- why?

one integral: total (KE + PE) energy = waves + vortical energy

 Y^* : at each α,β wave energy = 2x vortical, KE = 2x PE with forcing & dissip, much more energy at low α,β

C- ∂_Y H meets 2 demands: 1) transfer energy to high α, β

2) seek KE = 2x PE at each α,β

transfer depends on
$$\theta_{kpq} = (\mu_k + \mu_p + \mu_q) / ((\mu_k + \mu_p + \mu_q)^2 + (\omega_k + \omega_p + \omega_q)^2)$$

 μ << ω see resonant wave interactions, μ >> ω see turbulence

$$\theta \approx \tau^{-1} / (\tau^{-2} + N^2)$$
 where $\tau \approx \varepsilon^{-1/3} k^{-2/3} \Rightarrow D_U \approx \theta \tau^{-2} k^2 \Rightarrow U \approx N^2 k^{-3} + \varepsilon^{2/3} k^{-5/3}$

transfer of veloc variance (KE) is less efficient than tracer var (PE),

KE > 2xPE at lower α,β , KE < 2xPE at higher α,β

vertical buoyancy flux F=w'b' converts: $\partial_t KE = - \partial_t PE = F$

Figure 4. FT and FS corresponding to Fig. 3.

Summary

- 1. See dependent variables as expectations
- 2. Entropy gradients force expectations
- 3. *E.g.*: eddy forcing mean flow along slopes with secondary upwelling
 - *E.g.*: internal waves / vortical => mixing with persistent countergrad fluxes

Outlook

- 1. Work at less fudge
- 2. Alternatives (max entropy production, ...?)
- 3. Further applications (sea ice, ...?)

Examples from nanoworld (colloids, 'machines', microbiol): The only explicit physics is repulsion among balls, and from walls. "See" attraction. "Entropic forcing" in the lab!

