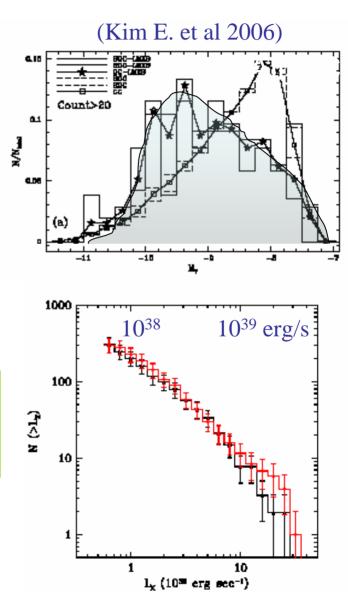
GC and Field LMXBs in Nearby Elliptical Galaxies

G. Fabbiano

Harvard-Smithsonian Center for Astrophysics

The LMXB - GC connection

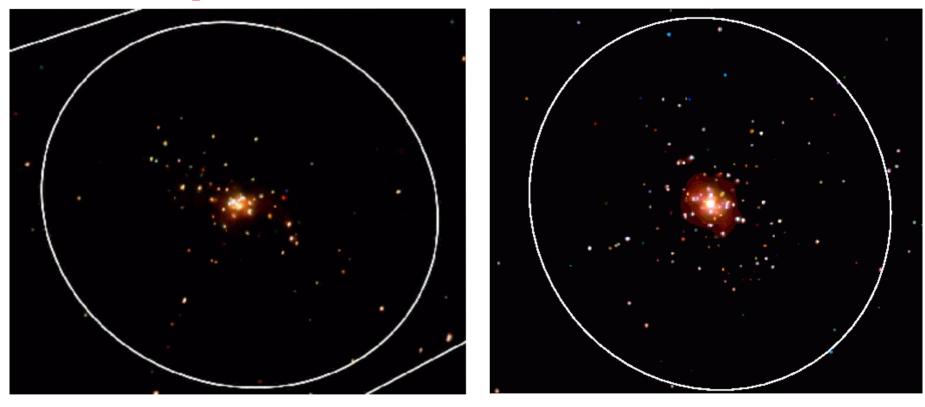

- Could all LMXB originate in GCs?
 - First suggested for Galactic LMXB
 - Formation more efficient than in the field (Clark 1975)
 - GC disruption or formation kicks would disperse LMXBs in the field (Grindlay 1984)
- But evolution of native field binary can also form a LMXB (see Verbunt & van den Heuvel 1995)
 - *Chandra* observations of early-type galaxies
 - Large samples of LMXBs
 - *Hubble* observations
 - Large samples of GCs
 - Combine
 - Identify GC and Field LMXBs
 - Study and compare properties
 - Observational constraints on models

Cast of Characters

- The Chandra NGC 3379, NGC 4278 collaboration
 - G. Fabbiano (PI), D.-W. Kim, N. Brassington, L. Angelini, R.
 Davies, T. Fragos, J. Gallagher, V. Kalogera, A. King, A. Kundu,
 S. Pellegrini, G. Trinchieri, S. Zepf, A. Zezas
- The NGC 4697 GC-LMXB collaboration
 - + A. Jordan, G. Sivakoff, A. Juett, C. Sarazin
- Visiting post-graduates from Southampton University (UK)
 - Sarah Blake (now at Oxford)
 - Lindlay Lentati

LMXBs and GCs - 'consensus'

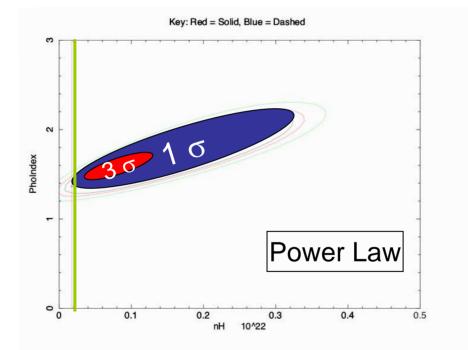
- L_X>~5×10³⁷ erg/s
 ~5% of GCs have an LMXB (e.g., Sarazin et al 2003)
- More luminous GCs more likely to host a LMXB
- Red/metal-rich GCs more likely to host an LMXB (e.g. Kundu et al 2002; Maccarone et al 2003; E. Kim et al 2006)
- L_X>~5×10³⁷ erg/s consistent XLF for field and GC LMXBs (E. Kim et al 2006)



LMXBs and GCs - 'discussion'

- Spectra
 - Harder spectra in blue GC LMXB? (NGC 4472; Maccarone et al 2003)
 - Absorption by radiatively induced winds in metal poor stars
 - Winds would speed up binary evolution resulting in a smaller number of LMXBs in metal poor blue clusters (Maccarone et al 2004)
 - ...But, no color dependence found in large sample (Kim et al 2006)
- Spatial Distribution (see Nicky Brassington's talk)
 - Are GC and field LMXB both radially distributed like galaxy light (Kim et al 2006)
 - ... Or not (Kundu, Maccarone & Zepf 2007)?
 - Spatial 'irregularities'?
- Low luminosity XLF
 - Is there a dearth of GC sources (e.g., M31, Voss & Gilfanov 2007)?
- Time variability? Transients? (see Tassos Fragos' talk)

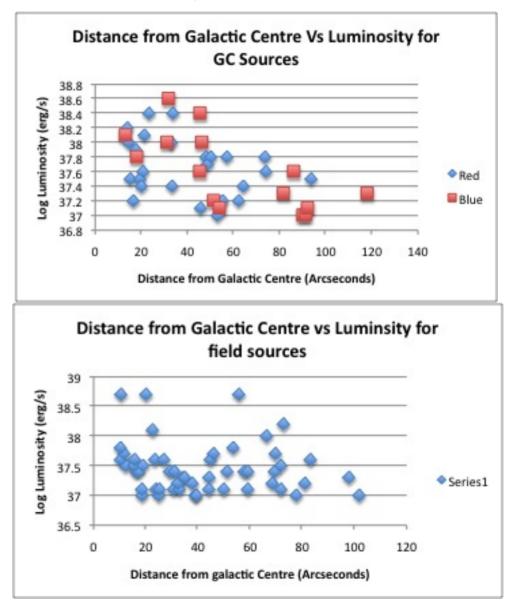
Deep Chandra ACIS Monitoring


 $\begin{array}{ccc} NGC \; 3379 \; T_{exp} = 337 ks & NGC \; 4278 \; T_{exp} = 470 ks \\ D = \; 10.6 \; Mpc \; L_{B} \; = \; 1.3 \; \times 10^{10} \; L_{\odot} & D = 16.1 \; Mpc \; L_{B} \; = \; 1.6 \times 10^{10} \; L_{\odot} \\ \hline GC \; poor & GC \; rich \end{array}$

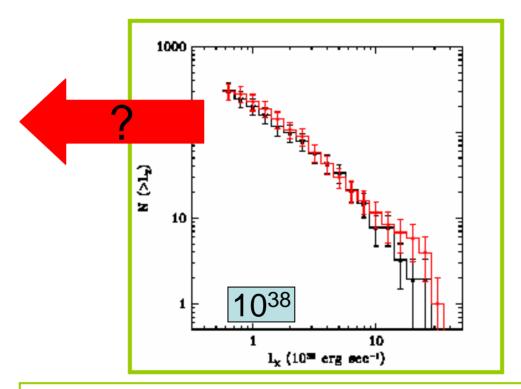
- Both galaxies have very little hot gaseous emission, to optimize faint LMXB detection
 - NGC3379: 98 sources
 - NGC 4278:180 sources

LMXBs co-added spectra in NGC 4278 Lentati et al. 2009, AAS

• Overall, field and GC sources have similar spectra



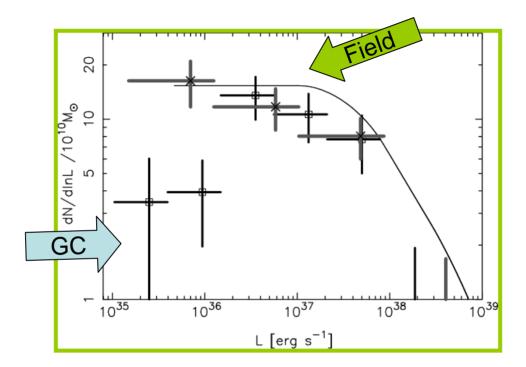
- No statistical difference between Red (V-I > 1.5) and Blue GC spectra (Red Counts = 4095 - 26 sources; Blue Counts = 1363 -17 sources)
- Consistent with absence of outer convective zone/magnetic braking/accretion in low metallicity star (Ivanova 2005)


GC LMXBs in NGC 4278 - Radial L_X effect (Lentati et al 2009, AAS)

- GC-LMXB in NGC 4278 tend to have a larger spread of luminosity at smaller galactocentric radii
 - SR P = 0.00009 (of no correlation)
 - Related to more massive/dense GC?

- No significant radial L_X effect for field sources
 - SR P = 4.5%

Old X-ray binary populations - LMXBs Field and GC XLF - $L_X > 5 \times 10^{37}$ erg s⁻¹



The high luminosity XLFs of GC and Field LMXBs are the same (*Kim E. et al 2006*)

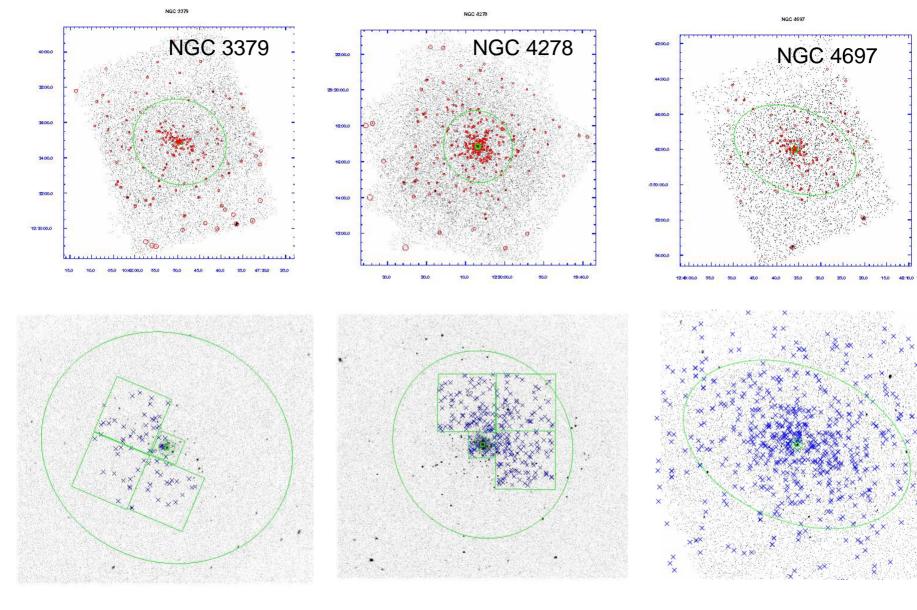
• Consistent with (but not proving) a similar origin

Does this similarity extends to lower luminosities?

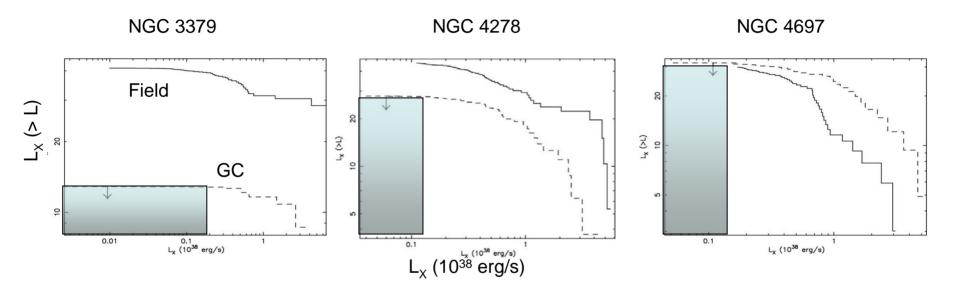
Old X-ray binary populations - LMXBs Field and GC XLF - Going deep

In M31 the XLF of GC LMXBs drops relative to that of Field LMXBs at low LX (Voss & Gilfanov 2007)

Is this a general feature, that may point to differences in the two populations?

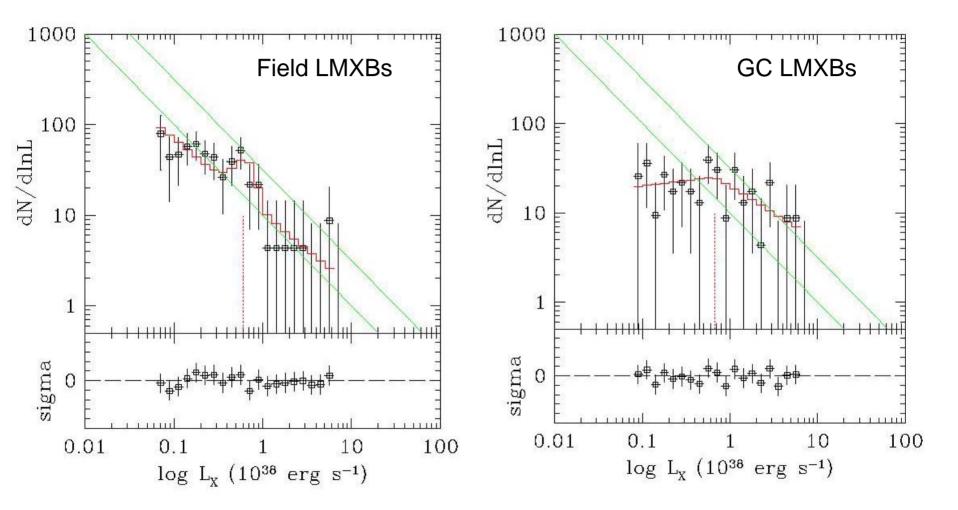

Low luminosity Field and GC LMXB XLFs in the *Hubble* WFPC2 field (A. Kundu) NGC 3379

T _{exp} (ks)	GC ^a	LMXB ^c	LMXB-GC	$f_{(GC \text{ with LMXB})}$	$f_{LMXB \text{ in } GC}$	Ref.
30	61	26	7	12%	27%	KMZ
337	70	62	9	13%	15%	B07

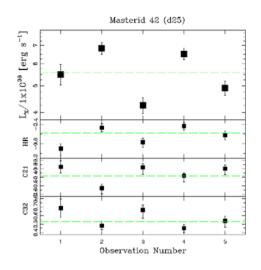

a) in the Hubble WFPC2 field

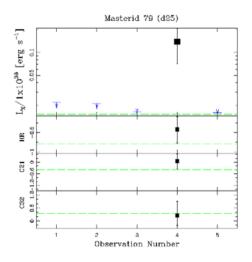
- 5% of GCs host an LMXB is ~5% @ L_X>4×10³⁷ erg s⁻¹ (see review Fabbiano 2006; Kundu, Maccarone & Zepf 2007)
- The fraction of GCs with LMXB is constant (~12%) for LMXB detection threshold from $\sim 2 \times 10^{37}$ erg s⁻¹ down to a few 10^{36} erg s⁻¹
- The number of detected LMXBs increases by a factor of 2.4 in the deeper data set, that of LMXB-GC is basically constant

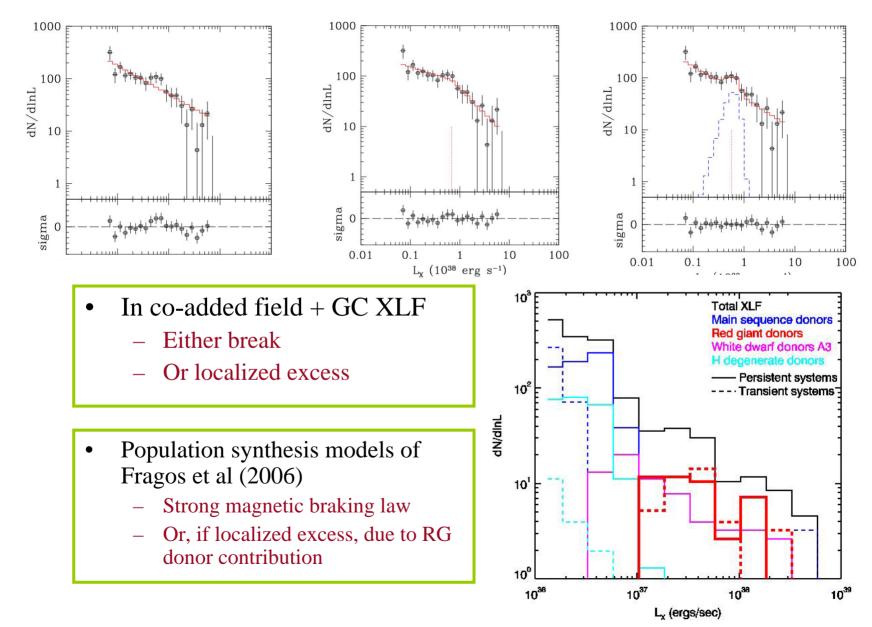
We expect 17 LMXB-GC - We detect 9 (P=1.2%)



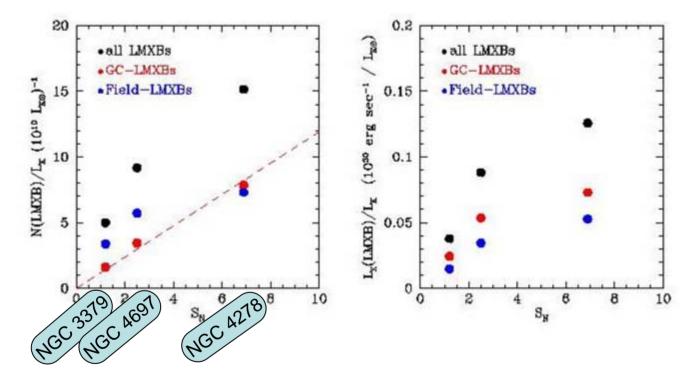
Field and GC LMXBs - Cumulative Luminosity Distributions


- Field and GC distributions are not statistically consistent
 including upper limit for non detected GC (stacking)
- GC distributions appear to flatten up at low L_X


Field and GC LMXBs - Co-added XLF


Why do Field and GC XLF differ?

- Multiple LMXBs in a given GC at the high L_X end?
 - 'Deplete' the low luminosity XLF
 - Maybe NOT variability points to single sources
- Transients dominating high L_X field sources?
 - Decrease the number of high L_X field sources, steepening the high L_X XLF
 - Possible High L_X transients rarer in GCs?
 - But they exist
- Onset of transient behavior at low L_X in GC LMXBs?
 - B08 detects a possible transient just above 10^{37} erg s⁻¹
 - XLF break at 5×10³⁷ erg s⁻¹ may be too high for ultracompact binaries
 - Consistent with MS donor systems
 - Mass transfer driven by magnetic braking at high L_X
 - Mass transfer driven by gravitational radiation below the break



The 5×10^{37} erg/s Feature

Globular Clusters and LMXB formation Correlation with S_N (Kim et al 2009)

- For our 3 galaxies with deep *Chandra* and *Hubble* observations
 - The number of GC LMXBs scales with the GC specific frequency S_N
 - The number of field LMXB also increases with S_N , but with a shallower dependency
- Field LMXBs are of mixed origin
- BUT... we need more galaxies to firm this up

Summary of Results

- 'Well known' $L_X > 5 \times 10^{37}$ erg/s
 - 5% of GC have LMXBs
 - LMXBs more likely in more luminous GCs
 - More likely in red, metal rich GCs
 - XLF of field and GC LMXBs consistent
 - New / In debate (...this talk)
 - Field and GC LMXBs have similar X-ray spectra
 - No 'statistical' difference in spectra of Red and Blue GC
 - In NGC 4278, more luminous GC LMXBs found at smaller radii (no effect for field)
 - 'Correlation' with S_N suggests that fraction of field LMXBs originates in GC
 - Fraction of GC with LMXB increases at lower luminosity, but not as fast as expected from the field LMXB increase
 - XLF of field and GC LMXBs differ at $L_X < 5 \times 10^{37}$ erg/s
 - Relative lack of GC LMXBs
 - Break at $L_X < 5 \times 10^{37}$ erg/s (or localized excess) also seen in field XLF

What do we need to do?

- Observationally
 - Larger samples of galaxies with Hubble and Chandra coverage
 - Deep monitoring Chandra observations
 - Maybe we can discuss proposals and collaborations here at Santa Barbara
 - From the Theory side
 - Fine tuned (tunable) evolutionary population synthesis models
 - Including scenarios for
 - Field formation and evolution
 - GC formation and evolution
 - GC formation and field evolution
 - Formation and evolution under distress (mergers, see Nicky's talk)