CHANDRA RESULTS ON X-RAY SOURCES IN GLOBULAR CLUSTERS

CRAIG HEINKE
(FOR JOSH GRINDLAY)
UNIVERSITY OF ALBERTA,
EDMONTON, AB, CANADA

CLUSTERS AS LMXB FACTORIES

- ** 13 of 150 LMXBs are in globular clusters, but only ~1/1000 of Galaxy's stars are in clusters
- * LMXB formation linked to high density; theories include
 - * Tidal capture: close encounter drains KE into tides (Fabian75)
 - ** Partner swapping: NS exchanges into existing binary (Hills76)
 - Direct impact: NS strikes giant (Verbunt87)
- [∞] Encounter rate parametrized as $\Gamma = \rho^2 r_c^3 / \sigma \propto \rho^{1.5} r_c^2$

CHANDRA ON BRIGHT LMXBs NGC 1851

- ** Chandra allowed separation of two bright LMXBs in M15 (White01)
- Gave precise positions for all bright LMXBs, allowing HST identifications (M15, White01; NGC 1851, Homer01; NGC 6652, Heinke01; NGC 6441, Homer02)
- Two new IDs (4 total) have ultracompact orbital periods (P<1 hour; Dieball05), suggesting direct impact (NS-RG) common in globulars

M15

TRANSIENT LMXBs IN QUIESCENCE

- >5 of 13 LMXBs in globulars are transient
- ** LMXBs in NGC 6440, Terzan 5, and (probably) Terzan 1 identified in quiescence (in't Zand01, Wijnands05, Cackett06)

NGC 6440, in't Zand01

Terzan 5, Wijnands05

QLMXB SPECTRA

- ** Additional component at high energy often seen, modeled as power-law of index ~1-2
- ** Accurately describes NGC 6440, Terzan 1 transients (in't Zand+01, Cackett+06)
- Terzan 5 transient, however, shows strong power-law with no soft component required (Wijnands+05)

NGC 6440, H-atm

Terzan 5, power-law fit

ADDITIONAL QLMXBS

- Many faint X-ray sources identified with similar spectra, L_X as known qLMXBs (Grindlay+01a,b, Rutledge+02, Heinke+03a)
- Optical (HST) counterparts identified for two (Edmonds+02, Haggard+04); others have very faint limits
- ** X-ray eclipses identified in two, with periods of 8.7 and 3.1 hours (Heinke+03b, Heinke+05a)

NGC 6266, Pooley03

Terzan 5, Heinke06a

IDENTIFYING QLMXBS

- Many qLMXBs in GCs well-fit by H-atm model
- Low-count X-ray srcs' colors match H-atm or typical hard CV X-ray spectrum

L:M80 XCMD, Heinke+03a

R: XCMD for all GC qLMXBs, Heinke+03b

IDENTIFYING QLMXBS

- But--Known qLMXBs have power-laws (e.g. Wijnands+05)
- ** Terzan 5 and 47 Tuc have qLMXBs with hard PL components

L: Terzan 5 XCMD, To 10³² Heinke+06

R: 47 Tuc XCMD, Heinke+05

IDENTIFYING QLMXBS

QLMXB DENSITY DEPENDENCE

- ** Pooley+06: $N=C_X+A_X\Gamma^{\alpha}$. Found $\alpha=1.75+0.43-0.36$
- ** Heinke+06: $\Gamma = \rho^{\alpha} r_c^{\beta}$. Found $\alpha \sim 2.1 + 1 0.6$
- Strong dependence on density, maybe too strong
- Extrapolating: ~100-200 qLMXBs in GC system

COMPARE WITH EXTRAGALACTIC GCS

- * Clear metallicity dependence (Kundu+03)
- In extragalactic GCs, LMXB $N \propto \Gamma^{0.82 \pm 0.05} Z^{0.39 \pm 0.07}$

(Sivakoff+07, Jordan+04)

 $\Re \operatorname{Set} \Gamma = \rho^{\alpha} r_{c}^{2} Z^{\delta};$ Galactic GCs allow either

Heinke+06

CATACLYSMIC VARIABLES (CVS)

Finding charts for 2 CVs in 47 Tuc, Edmonds+03a

** Chandra and HST confirm blue, variable counterparts to X-ray sources (22 in 47 Tuc: Edmonds03a; 10 in NGC 6752, Pooley02; 9 in NGC 6397, Grindlay01b)

X-ray counterparts of CVs in 47 Tuc

X-RAY CV PROPERTIES

- Blue in U-V, redder in V-I, Hα emission
- Optical flickering, ellipsoidal variability
- $F_X/F_{Opt} \sim 0.2$ to 30
- Periods from 1.7 to26.6 hours

R vs. Hα-R CMD, NGC 6752, Pooley02

CV DENSITY DEPENDENCE

- ** Total # srcs $\propto \Gamma^{0.74\pm0.36}$,
 dominated by CVs (Pooley+03)
- ** For CV sample: $N=C_X+A_X\Gamma^{\alpha}$, $\alpha=0.83^{+0.29-0.25}$ (Pooley+06)
- Majority of CVs in GCs formed dynamically; some may be primordial

CV DENSITY DEPENDENCE

- ** Heinke+06:Divide CVs @ L_X=10³²
- ** Brighter CVs appear dynamical
- Faint CVs lower ρ dependence; some primordial CVs?

CVS IN SPARSE CLUSTERS

- Credible CV candidates in 4 sparse clusters; NGC 288 (Kong+06), M55 & NGC 6366 (Bassa+08), M71 (Huang+09)
- # 4 to 20% of M4's Γ; M4 has 1 CV
- * Evidence some CVs are primordial

NGC 288; Kong

M71; HST

CHROMOSPHERICALLY ACTIVE BINARIES (ABS)

ABs in 47 Tuc, Edmonds03b

Period distributions in 47 Tuc, Edmonds03b

- ** 60 X-ray ABs identified in 47 Tuc; also in NGC 6397, NGC 6752, M4, NGC 288, M55, NGC 6366, M71
- Most close binaries (P<1 day) on upper MS detected with Chandra, show chromospheric activity

AB DENSITY DEPENDENCE

- ** Hard to identify pure sample;
 X-ray faintest sources
- ** Bassa+04 suggest cluster mass scaling (all primordial)
- **M71** shows possible excess

PRIMORDIAL + DYNAMIC

- ₩ Using N=aΓ+bM, Bassa
 fit total cluster X-ray
 numbers (dashed
 contours)
- Repeat, forcing N > minimum # optical counterparts (solid); evidence primordial

Contours $(\Delta \chi^2)=1,4,9$; Bassa+08

FUTURE PLANS

- Wery deep Chandra on NGC 6397 (L_X~6e28, Grindlay), reaching AM CVns, faint polars, and post-minimum CVs.
- Deep: (L_X<1e30) M28 (Grindlay), M4 (Pooley), 6752 (Heinke), allowing AB comparisons</p>
- Medium depth on rest of "core-collapsed" clusters (Pooley)
- ** Shallow depth on ~31 unobserved clusters, to reach 90% of all qLMXBs in Galactic GCs (Pooley)
- * XMM observations of 8 open clusters (Pooley)

CONCLUSIONS

- ** Comparing numbers of X-ray sources per cluster to dynamical production rate $\Gamma = \rho^{1.5} r_c^2$ vs. primordial formation
- Quiescent LMXBs produced dynamically (Pooley+03, Heinke03)
- CVs formed both primordially and dynamically (Heinke+06, Pooley+06, Bassa+08)
- ** Active binaries are primordial, maybe destroyed in interactions (Bassa+04, Kong+06, Huang+09)

Chandra image of 47 Tuc