## IMBH Fingerprints in Globular Clusters



#### Michele Trenti University of Colorado at Boulder

in collaboration with Mike Gill, Mario Pasquato, Guido De Marchi, Doug Hamilton, Cole Miller, Massimo Stiavelli, Roeland van der Marel

#### Intermediate Mass Black Holes

- Black Holes of 10<sup>2</sup>-10<sup>4</sup> Msun, missing link between stellar and supermassive BHs Have been predicted in different astrophysical scenarios:
  - Remnants of Population III stars (Heger et al. 2003)
  - Runaway Collapse of Young Star Clusters (Portegies-Zwart et al. 2004)
  - Globular Clusters seem the best place to look for them
  - But unambiguous detection is still missing

## Searching for IMBHs in GCs

- Globular Clusters have very little gas
  - x-ray emission faint at best
- Sphere of influence of the BH is small (a few arcsecs): Limited Direct BH Influence



- Interpretation of surface brightness + velocity dispersion profiles is model dependent [e.g. through isotropic Jeans Equations]
  - Alternative Dynamic Models with NO BH can be constructed (e.g. Baumgardt et al. 2005)

## Searching for IMBHs in GCs

- Proper motion studies can provide the best evidence for IMBH but these are expensive
  - multiyear HST observations needed for GCs
- Are we focusing on the right GCs candidates?
  - Can we identify fingerprints for the IMBH presence?



### IMBH fingerprint: rc/rh

Efficient IMBH heating leads to

- Universal large rc/rh after a few relaxation times
- But... there are other (equally) efficient heating sources
- Stellar evolution (Hurley 2007),
   WD kicks (Richer's talk), stellar
   collisions (Chatterjee et al.
   2009), stellar BHs (Davies' Talk)



Trenti et al. (2007)

### IMBH fingerprint: mass segregation

- In a GC the most massive stars segregate toward the center of the system (energy equipartition)
- Simulations with an IMBH have less mass segregation (Baumgardt et al. 2004, Trenti et al. 2007)
  - Effect well beyond the BH sphere of influence!



Spatial distribution of binaries @ t=10t<sub>rh</sub>

Trenti et al. (2007)



# Quenching of mass segregation

- IMBH quickly gains at least one tightly bound massive star:
  - A super-scatter machine is born!
- Three body encounters with the BH scatter out incoming stars independently of their mass
- no strong dependence on BH mass expected or seen in simulations when mBH>>mstar
  - random walk of the IMBH within the core: loss cone is constantly replenished, high rate of interactions over time

### Our Modeling

- Direct N-body simulations with Aarseth's NBODY6:
  - NO softening
- Exact treatment of all strong interactions including with the BH
  - Up to N=32768
- Grid of initial conditions
  - "Late Time" Mass function, Primordial Binary Fraction, Tidal Field, Concentration
- IMBH mass about 1% of total mass of the system
- Runs carried out until tidal dissolution (about 15 t<sub>rh</sub>)

#### Measuring Mass Segregation

#### $\Delta < m > = <m(r = 0) > - <m(r = rh) >$

Mass Segregation  $\Delta < m >$  is measured as the difference in average main sequence mass between the center and the half mass radius

Differential measure:

erases dependence on the IMF

Mass not light based:

less sensitive to fluctuations due to small number of giant stars



### Mass Segregation Results: Simulations

- Simulations start with no mass segregation
- After about 5 relaxation times equilibrium value of mass segregation is reached
- Good separation of runs with and without an IMBH



## Mass Segregation: A first application

- Search for IMBH fingerprint can be applied to well relaxed clusters (t<sub>rh</sub><1Gyr)
- Detailed Star Counts are needed, with coverage to at least half-mass radius
- Data and Simulations need to be treated self-consistently
  - e.g. completeness, FOV, measure of structural parameters

#### NGC 2298



#### NGC2298 dataset

- **Cluster properties** 
  - t<sub>rh</sub> = 10<sup>8.41</sup> yr
  - rh = 49″
    - $M_{tot} = 3x10^4 Msun$
- Data Reduction: DeMarchi & Pulone (2007) HST-ACS WFC F606W & F814W --- 10 $\sigma$  limit @ m<sub>606</sub>=26.5, m<sub>814</sub>=25.0
  - >50%completeness @ 0.2 Msun

#### NGC 2298



### NGC2298: predictions from simulations

- Simulations analyzed between 6 and 8 t<sub>rh</sub>
- Full radial mass segregation profile has been obtained
- Plot shows 1 and  $2\sigma$  scatter of the simulated clusters
  - sample of runs (270 snapshots), sample of random projections
  - Good separation IMBH vs NO BH in the center



#### NGC2298: comparison with simulations

- Observed mass segregation profile is matched very well by simulations
- Cluster is too segregated to be likely to host an IMBH
- Formal limit from the inner two points: >300Msun BH excluded at 3σ CL
- but limiting factor is number of simulations (only 135 snapshots with IMBH)



### NGC2298: Error budget

Poisson errors have been estimated by bootstrap (100 synthetic catalogs)

Possible systematic errors from determination of

- Half mass radius. Even a +/- 4" mis-determination only shifts by less than  $1\sigma$  Poisson error
- Center. We use mass, not light based measure, more stable:
  [0.4" uncertainty at 1σ]
  Miscentering only increases BH rejection confidence level



#### The future

Larger sample of simulations

- NBODY-6 SSE/GPU code on NCSA Lincoln cluster
  - Improved statistics, wider sampling of initial conditions, larger N
- Suitable HST data are available in the archive for about 15 clusters



#### Summary

- IMBHs leave multiple fingerprints of their presence in RELAXED globular clusters
- large rc/rh [unfortunately not unique]
- QUENCHING OF MASS SEGREGATION
- Direct N-body simulations show a clear separation in the amount of mass segregation depending on IMBH presence
  - Application to NGC 2298 validates the method
    - no evidence for BH found, limit M<sub>bh</sub> < 300 Msun at  $3\sigma$
  - Analysis of large sample of galactic globular clusters coming soon