Accretion evidence for black holes in globular clusters

Tom Maccarone (University of Southampton) Collaborators: Arunav Kundu (MSU) Steve Zepf (MSU) Kathy Rhode (Indiana, Wesleyan &Yale) Stephen Shih (MSU) Gilles Bergond (CAHA) Dan Stern (JPL) John Salzer(Indiana & Wesleyan) Rob Fender (Southampton) Matthieu Servillat (Toulouse/Cfa) Tasso Tzioumis (ATNF)

Key timescales for star clusters

- Crossing time
 - $-t_{cross} = R/v \sim 10^6$ years
- Relaxation time
 - $t_{relax} = (0.1N)/(ln N) * t_{cross} \sim 10^9 yrs$
- Evaporation time
 - start with Maxwellian distribution of stars

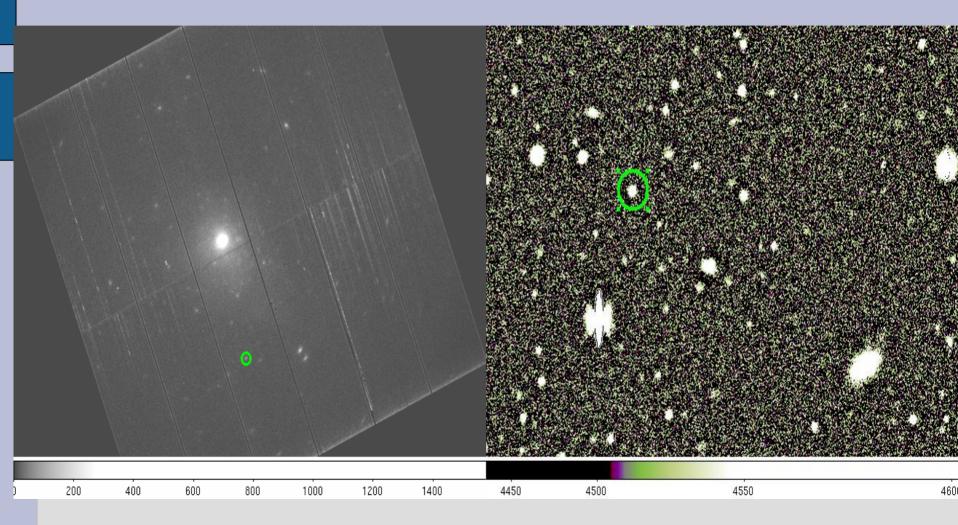
 - t_{evap}=136 t_{relax}
 Can be faster due to tidal effects see e.g. Mark Gieles's talk

Black holes: severe mass segregation causes ejection

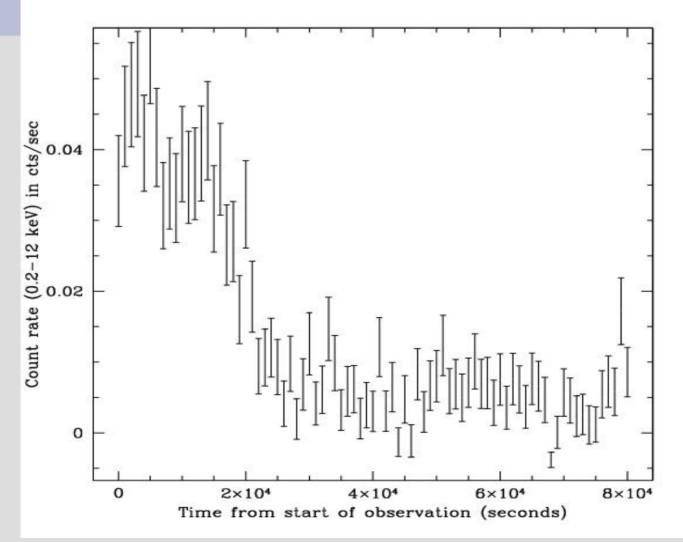
- Old star clusters no massive stars left
- Black holes ~5 times heavier than everything else
- Become fully segregated do not interact with other stars substantially
- Leads to a cluster with only a few hundred stars very rapid evaporation
- Binary effects can speed this process up
- If there are still some left, GWR rocket effect can "kick in"

Spitzer 1969; Kulkarni et al. 1993; Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000 But, more recent theoretical work argues that these effects do not go to completion in a Hubble time(e.g. Mackey et al. 2007, Melvyn's talk, Moody & Sigurdsson 2008 – see also poster at this meeting)

Milky Way Part I


• Milky Way has 13 bright X-ray binaries

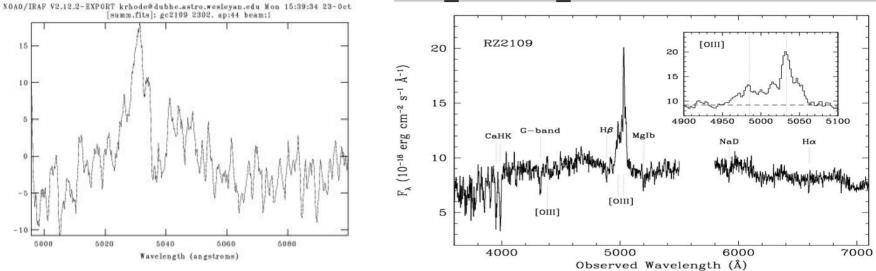
- 12 show Type I X-ray bursts, the 13th is edge on and couldn't show them
- Evidence that ejection works, or just small number statistics?


Early evidence for GC black holes

- Some X-ray sources brighter than L_{EDD} for a neutron star in extragalactic globular clusters
 - Known since first Chandra observations of nearby ellipticals
- Never show variability? (Irwin 2006)
- Variability is the key to proof (Kalogera, King & Rasio 2004) – otherwise, may be a superposition of many sources

XMM observations of NGC 4472

Highly variable



What is this object?

- Variability indicates that it is clearly a single object, and at this luminosity (4.5*10³⁹ ergs/sec), it must be a black hole
 - Variability predominantly below 0.7 keV
 - Probably change in absorption
- X-ray spectrum dominated by a kT=0.22 keV disk blackbody component with ~4000 km inner radius
- Black hole mass
 - luminosity and temperature hint at something much larger than 10 solar masses
 - character of the variability suggests, though, that this may be super-Eddington accretion

Maccarone, Kundu, Zepf & Rhode 2007

Optical spectra – strong broad [OIII]

Keck & WHT spectra show ~1500 km/sec component to the line (see also poster by Matt Steele), but also a narrower (~200 km/sec) core

This line requires an outflow, because it is not possible to fit enough oxygen close enough to an IMBH to produce the line luminosity

No H-alpha emission?

Little or no line variability over 5 years baseline, argues against supernova idea suggested by Jimmy Irwin

Super-eddington accretion

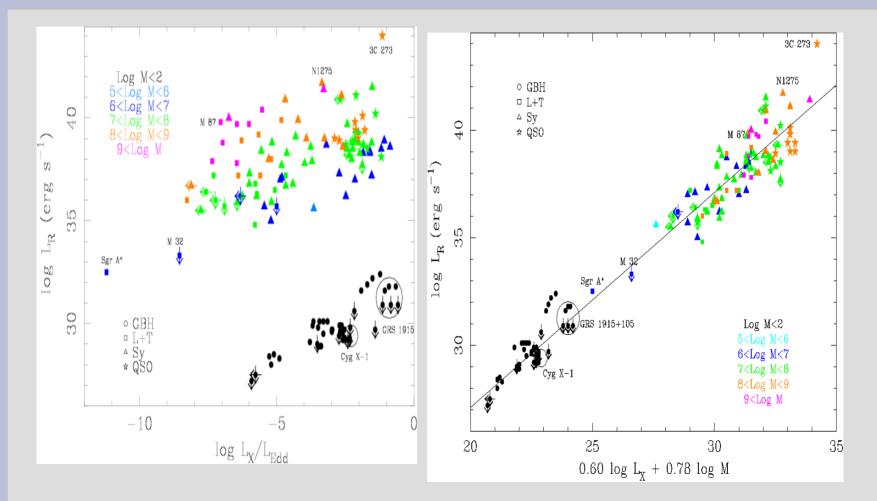
- Accretion at local Eddington rate in annuli
 - gives R_in α mdot R_SCH
 - L α (In mdot) L_EDD
 - strong disk winds
- Blows out a bubble in the intracluster medium
- Puffs up accretion disk, drives irradiative warping, leads to precessing self-obscurration
- Question: very tight ultracompact X-ray binary (period of ~5 minutes) or peak of outburst of a stellar mass black hole? Zepf et al. 2007, Shih et al. 2007

Are there more: extragalactic?

- Many of the L_X>10³⁸ ergs/sec sources probably are black holes
- Use "spectral states" + luminosities or use detailed spectral characteristics (e.g. Barnard et al. 2008; talk by Natalie Webb)
 - But must be careful about superpositions of sources, and spectral state hysteresis effects for former, absorption for latter
- A few more high L_x, highly variable sources are being found – Fabbiano/Brassington/Blake et al in prep, Shih et al in prep.

Are there any in the Milky Way Part II

- Want some hope of getting a mass function, to meet the highest standard of proof for black holes
- Within our Galaxy?
 - quiescent black hole XRBs are very hard to tell apart from CVs
 - Radio emission would be strong evidence
 - L_R α L_X^{0.7} for BHs (Gallo, Fender & Pooley 2003)
 - Should be feasible with EVLA, E-Merlin, maybe SKA pathfinders
 - L_opt/L_X too high for orbital period is suggestive
 - 47 Tuc W21? (Maccarone & Knigge 2007)


Intermediate mass black holes

- Several methods of searching
 - Dynamics
 - See most of the rest of the talks in this session
 - Controversial about whether it works
 - Accretion from ISM
 - Will not give precise mass estimates when it works, but gives a much clearer yes/no signature

Accretion measures

- X-ray and radio or just radio flux
- Assumptions needed
 - Gas density (typically about 0.1 cm⁻³, as found in 47 Tuc from pulsars – Freire et al. 2001)
 - Alternatively, can take ISM from free expansion of stellar winds (Pfahl & Rappaport 2001)
 - Accretion rate is fraction of Bondi rate (we typically take 10⁻²⁻³) – based on AGN results – Pellegrini 2005
 - Radiatively inefficient accretion
 - (L_x α mdot²)
 - Fundamental plane of black hole activity to go between radio and X-ray (Gallo et al. 2003 for binaries; extended to AGN, refined in Merloni et al. 2003; Falcke et al. 2004; Koerding et al. 2006)

Fundamental plane

From Merloni, Heinz & Di Matteo (2003)

Results

None of the Galactic globular clusters we've looked at has

the right kind of radio source (Maccarone, Fender &

Tzioumis 2005; tabulation of many groups' work in

Maccarone & Servillat 2008)

- A few give clear limits that the M-sigma relation is not being satisfied in some clusters- Omega Cen, NGC 6266, NGC 6440
- Argues against heavy black holes being too common
- However, good evidence in G1 for a ~10000 solar mass black hole (Trudolyubov & Priedhorsky 2004;Pooley & Rappaport 2006; Maccarone & Koerding 2006; Ulvestad, Greene & Ho 2007)
 L_x = 2*10^36 ergs/sec, F_radio = 30 μJy

Conclusions

- There are accreting black holes in globular clusters
- Our object is most likely to be a stellar mass black hole at L>L_EDD
- There is reasonable hope to find quiescent BHXBs in the Milky Way
- Evidence for IMBHs in globular clusters is starting to amass (at least in G1), although there is still the question of what defines a cluster