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Fractionalized phases
• Fractionalized phases or spin liquids — no symmetry breaking, 
fractionalized excitations, and topological order

• Experimental situation is not clear — a few candidates

• Effective field theories and properties of such spin liquids 
phases are quite well understood theoretically, many people

• Excitations carry fractional quantum numbers and interact  
with emergent gauge fields
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Fractionalized phases
• Microscopic models that have been identified to have a spin 
liquid ground state — unusual interactions, restricted Hilbert 
spaces
• Moessner and Sondhi — dimer model on the triangular lattice
• Balents, Fisher, and Girvin — easy axis limit of the AF XXZ 
model on the kagome lattice (nn, nnn, nnnn interactions)

• Hermele, Balents, and Fisher — easy axis limit of the AF XXZ 
model on the pyrochlore lattice

• Show the presence of spin liquid phases in simple models on 
the kagome and pyrochlore lattices by quantum Monte Carlo 
method

• Local interactions and no Hilbert space constraints

• Stochastic series expansion algorithm Sandvik



Pyrochlore lattice
Hard-core bosons on the pyrochlore lattice
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Model
At half filling, maps onto a spin-1/2 model

Effective ring exchange model in the large      limit
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Ring exchange model

Relaxing hard-core constraint — quantum rotor model —
effective U(1) gauge theory

 
Ground state is a U(1) spin liquid that is associated with the 
Coulomb phase of the above gauge theory

Gapless photon excitations —     contribution to the specific 
heat
Gapped monopole and deconfined spinon excitations

Hermele, Balents, Fisher
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Superfluid density

Insulating phase at large values of

What is the nature of the insulating phase?
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Correlation functions

Equal time density correlator

Static density correlator

Equal time bond-bond correlator

S(ω = 0,q)/N = 〈
∫

dτ n†
qτnq0〉

C(τ = 0,q)/N = 〈n†
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Structure factors in the [hhl] plane
Quantum correlators in the insulating phase

No Bragg peaks — no symmetry breaking
Bond correlators also do not show any Bragg peaks — no bond 
or plaquette order     spin liquid?

Static s.f.Equal time s.f. Ising model s.f.



Correlations in the [hhl] plane
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How to detect a U(1) spin liquid phase

Photon excitations give a     contribution to the specific heat
Might be hard to measure at low temperatures

Look at correlation functions:

Static correlators have a dipolar form

Equal time correlators decay faster (in real space)

Static and equal time correlation functions have those two 
distinct forms — U(1) spin liquid phase
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Lattice correlators
Non-compact lattice gauge theory

where

Equal time and static correlators

Fit equal time and static data to those functions — good 
diagnostic of the U(1) spin liquid
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Fitting to electric correlators
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Fitting to electric correlators
Data fit the predictions of non-compact electrodynamics 
extremely well

Fits are highly constrained —        is overdetermined — it can 
be obtained both from the best fit value of the first argument 
of     and from the ratio of equal time and static data

Insulator is a U(1) spin liquid phase!
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Quantum phase transition: Scaling I
In the vicinity of a continuous quantum phase transition, 
superfluid density scales as

           is fixed

Dynamical critical exponent

Transition at 

z = 1
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Quantum phase transition: Scaling II
Data collapse

Looks continuous, but ...

Correlation length exponents is too small?
Weakly first order transition?

Correlation length exponent

Quantum critical point at
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Kagome lattice
Hard-core bosons on the kagome lattice
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Model, continue
At half filling, maps onto a spin model

Effective ring exchange model in the large      limit

Three-dimer model on the triangular lattice in the classical 
limit 
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Ring exchange model

Supplemented the ring-exchange model with the Rokhsar-
Kivelson potential energy term

    spin liquid phase close to the solvable RK point
(in the absence of the RK term                                   ) 

Gapped vison excitations
Deconfined spinon excitations

Topological order, e.g., ground state on a torus is four-fold 
degenerate

Balents, Fisher, and Girvin
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exact diag. by Sheng and Balents



Superfluid density

Insulating phase at large values of

What is the nature of the insulating phase?
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Insulating phase: Correlations
Equal-time density and bond-bond structure factors do not 
show any Bragg peaks — no symmetry breaking!

Equal-time density structure factor in 
momentum space in the spin liquid phase 
for

Compare to the structure factor of the 
classical 3-dimer model on the 
triangular lattice

Gregor, SI, Moessner, and Sondhi, (unpublished)

L = 24, V/t = 20, T = t/12



Insulating phase: Finite-temperature properties
Energy per site    and compressibility    as a function of 

Energy decreases in two steps:
First drop — freezing out of 
charge excitaions
Second drop — evolving into 
the spin liquid ground state
(vison gap)

Compressibility is zero at 
low temperatures and finite 
at temperatures where the 
energy plateau terminates 
indicating charge excitations

Vison gap 
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Topological order: ring exchange model
Lattice with periodic boundary conditions in both directions

In the dimer subspace (         ), topological sectors are 
defined by having odd or even number of bosons on each row/
column (parity sectors)

Four topological sectors in the ring exchange model are not 
changed by local moves

Ground state is four-fold degenerate

n! = 3



Topological order: ring exchange model
Lattice with periodic boundary conditions in both directions

In the dimer subspace (         ), topological sectors are 
defined by having odd or even number of bosons on each row/
column (parity sectors)

Four topological sectors in the ring exchange model are not 
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Ground state is four-fold degenerate
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Topological order
Parities are not conserved quantities in the boson model
Quantum ground state no longer lies in the dimer subspace — 
small density of defects (         )

However, we still can define topological sectors

Ground state wave functions,       , have nonzero zero overlap 
with the dimer subspace wave functions

These wave functions are not connected by local moves

Energies are the same within statistical errors — ground state 
is four-fold degenerate — topological order
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Quantum phase transition: Scaling I
In the vicinity of a continuous quantum phase transition, 
superfluid density scales as

           is fixed

Dynamical critical exponent

Distinct crossing point

Transition at 
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Quantum phase transition: Scaling II
Data collapse

Correlation length exponent

Quantum critical point at
(V/t)c = 19.80(2)

ν = 0.67(5)
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Conclusions
• Studied a hard-core model on the kagome lattice by 
quantum Monte Carlo method

•     fractionalized phase with topological order, gapped vison 
and deconfined spinon excitations

• Superfluid-insulator quantum phase transition is continuous

• Studied a hard-core model on the pyrochlore lattice by 
quantum Monte Carlo method

•       fractionalized phase
• Static and equal time correlators in this phase are well 
described by electric field correlators in the Coulomb phase 
of a       lattice gauge theory 
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