BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

Daniel E. Sheehy
Ames Laboratory
Iowa State University

Work in collaboration with L. Radzihovsky (Boulder)

cond-mat/0607803 (Annals of Physics, in press)

Support: NSF DMR-0321848 and the Packard Foundation
Overview

• Bose-Einstein condensation (BEC) of dilute vapors of alkali atoms
 – All bosons in same quantum state
 – Superfluidity
 – Condensed matter physics in an atomic physics setting

• Recent interest: condensation of two types of atomic fermion

 – Fermionic superfluid

• Relies on strong attraction between fermions: Feshbach resonance
 – Novel experimental knob: Tune interaction strength
 – Crossover from BEC to BCS superfluidity

• Recent Work: Apply spin polarization to fermion superfluid
 – Usual case: Equal numbers of \uparrow and \downarrow
 – Polarization: More \uparrow than \downarrow
 – Exotic phases, phase separation

Next: Fermionic superfluids…
Fermionic pairing of cold atoms
Regal et al PRL 04; Zwierlein et al ibid; Kinast et al ibid, Bartenstein et al ibid, Bourdel et al ibid; Partridge et al ibid 05…

• Fermionic superfluidity: atomic fermions 40K, 6Li

 Ultracold: \sim10-100 nK
 Dilute: $\sim 10^{10}$-1013 cm$^{-3}$

• Confined to a parabolic (harmonic) trap -- typically optical

 Atoms attracted to laser beam

 – Pairing of two distinguishable fermion species
 – “Spin” -- different atomic hyperfine states

 (e.g. 40K: f=9/2, m_f = 7/2,9/2)

 total atom spin

• Novel feature: Interactions experimentally tunable

 – Feshbach resonance: interactions enhanced by applied magnetic field B

 $a_s \propto \frac{1}{B - B_0}$

 B_0 “resonance position”

 Next: Feshbach resonance
One channel model of Feshbach Resonance

• Near resonance:
 \[a_s \propto -\frac{1}{B - B_0} \]
 \(B \) is the magnetic field, \(B_0 \) is the resonance field.

 e.g., Regal & Jin PRL 90, 230404 (2003)

• One-channel model:
 \[H = \sum_{p,\sigma} (\varepsilon_p - \mu) c_{p\sigma}^\dagger c_{p\sigma} + g \sum_{p,q,k} c_{k\uparrow}^\dagger c_{p\downarrow} c_{k+q\downarrow} c_{p-q\uparrow} \]
 \(\sigma = \uparrow, \downarrow \)
 \(g < 0 \)
 \(g \) is the scattering length.

 Strong attractive interactions

• Reproduces correct two-body physics
 – Vacuum scattering length:
 \[a_s \propto \frac{1}{|g| - \frac{2\pi^2}{m\Lambda}} \]
 \(\Lambda \) is the ultraviolet (UV) cutoff.
 – Gas at density \(n \): Mean-field theory based on BCS wavefunction
 – Quantitatively valid for weak coupling (small \(g \))
 – Qualitatively valid for any coupling

Next: BEC-BCS crossover

Holland et al PRL 01
Ohashi & Griffin PRL 02
Andreev et al PRL 04
BEC-BCS crossover: Mean-field theory

- **Theory:** smooth crossover between BEC and BCS limits
 - Assume: Variational BCS ground state characterized by the pairing \(\Delta = \left\langle c_k \uparrow c_{-k} \downarrow \right\rangle \)
 - Minimize variational ground-state energy

Positive detuning: BCS regime \((a_s < 0) \)
- Weakly attractive interactions

 \[
 \mu > 0 \\
 \Delta \ll \varepsilon_F
 \]

 Neutral BCS superconductor!!

 Cooper Pair size \(\gg \) Interparticle spacing

Negative detuning: BEC regime \((a_s > 0) \)
- Strong attractive interactions

 \[
 \mu < 0 \\
 n_m \propto |\Delta|^2 \approx n/2
 \]

 Tightly bound Molecular BEC

 Molecule size \(\ll \) Interparticle spacing

Chemical potential \(\mu / \varepsilon_F \)

Pairing \(\Delta / \varepsilon_F \)

Next: Validity
Validity of BEC-BCS mean-field theory

- Quantitatively valid at large positive detuning (BCS) regime $a_s < 0$, $|a_s| << k_F^{-1}$
 - Fluct’s around mean field theory grow with reduced detuning

- Asymptotic negative detuning (BEC) regime $a_s > 0$, $|a_s| << k_F^{-1}$
 - Gas of repulsive bosons
 - BCS wavefn: $a_m = 2a_s$
 - Exact analysis: $a_m = 0.6a_s$
 - Born approx. result
 - Petrov et al PRL 04; Levensen & Gurarie PRA 06
 - Confirms qualitative validity (and quantitative invalidity) of BCS w.f.

- Unitary regime: $|a_s| >> k_F^{-1}$
 - Universal: Only energy scale is $\varepsilon_F = \frac{k_F^2}{2m}$
 - No small parameter
 - Monte Carlo
 - Introduce artificial small parameter
 - Narrow resonance - Andreev et al PRL 2004
 - Epsilon expansion (spatial dimension) - Nishida & Son PRL 2006
 also Nikolic & Sachdev 2007

Next: Exp’ts
Experiments: Smooth crossover & superfluidity

- Measure **condensation** directly: Occupation of lowest state
 - Regal et al PRL 2004
 - Zwierlein et al PRL 2004

- Measure binding energy of pairs/molecules
 - Increases with reduced detuning
 - Chin et al Science 2004
 - Partridge et al PRL 2005

- Collective oscillations: consistent with superfluidity
 - Indirect measure of superfluidity
 - Kinast et al PRL 2004

- Rotation of cloud: Vortices across resonance
 - Zwierlein et al Nature 2005
 - Direct measure of superfluidity
 - Vortices in a Bose-Einstein condensate
 - Vortices in a neutral BCS superconductor

Next: Spin Polarization
Applied spin polarization

• Recent work*: Explore changing relative number of \downarrow, \uparrow
 – Additional experimental “knob” for cold-atom experiments

 Polarization: $P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$

 Aim: Extend phase diagram to polarized case $P \neq 0$

 – Analogous to applying a Zeeman magnetic field that favors more \uparrow than \downarrow
 • “Pauli limiting” (Clogston limit) magnetic field in superconductors
 • FFLO state: Exotic inhomogeneous superconductor $\Delta(r) \propto \cos[Q \cdot r]$

 – Strongly-interacting fermions with density imbalance
 • crystalline color superconductivity Alford et al PRD 01, Liu & Wilczek PRL 03

 – Smooth crossover fractured into rich phase diagram

 Phase transitions, polarized superfluidity, polarized Fermi liquid, phase separation...

*Theory: DS & Leo Radzihovsky, PRL 06, Ann. Phys. 07, PRB 07, Bedaque et al PRL 03, Carlson & Reddy PRL 05, Cohen PRL 05
Pao et al PRB 06, Son & Stephanov PRA 06, Chien et al PRL 06, Parish et al Nat. Phys. 07,....

Exp’t: Zwierlein et al Science 06, Partridge et al Science 06,....

Next: Model
Model of a polarized superfluid

Model: \[H = \sum_{p,\sigma} (\varepsilon_p - \mu_\sigma) c_{p\sigma}^\dagger c_{p\sigma} + g \sum_{p,q,k} c_{k\uparrow}^\dagger c_{p\downarrow}^\dagger c_{k+q\downarrow} c_{p-q\uparrow} \]

- Different chemical potentials \(h = \mu_\uparrow - \mu_\downarrow \) induce (polarization) \(P \)

- BCS superconductor under applied Zeeman field \(h \): First-order transition

- Phenomenology of first-order transitions
 - Phase separation, metastable, unstable solutions
 - Cannot detect transitions locally
 - Local criteria determines spinodals

- Must globally minimize ground-state energy (or free energy) to correctly obtain phase diagram
 - Sarma 1963: Solutions to gap equation that do not minimize \(E_G \)
 \[0 = \frac{dE_G}{d\Delta} \]
Global phase diagram

\[P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} \]

Top axis: \(N_\downarrow = 0 \)
(Pure Normal)

Polarized Fermi gas

Bottom axis: Smooth BEC-BCS crossover phase

“Magnetic superfluid”: Tightly-bound molecules and spin-polarized Fermi sea

See also: Gu et al cond-mat 06, Parish et al 07
BCS regime zero-T phase diagram

- **Grand-canonical ensemble:**
 - Impose $\mu_\uparrow, \mu_\downarrow$, minimize $E_G(\Delta) = \langle \Psi|H|\Psi \rangle$
 - Adjust $\mu_\uparrow, \mu_\downarrow$ to achieve correct N_\uparrow, N_\downarrow where $N_\sigma = \langle \Psi|\hat{N}_\sigma|\Psi \rangle$
 - Certain regimes: cannot achieve correct N_\uparrow, N_\downarrow…Maxwell construction

- **Positive-detuning BCS regime:**
 - $h = 0$:
 - Usual BCS pairing
 - $h \neq 0$:
 - Second local minimum @ $\Delta = 0$
 - Global min. unaltered
 - Transition to state at $\Delta = 0$
 - Unpaired N state stable!
 - $h = h_c \equiv \Delta_0/\sqrt{2}$:
 - Clogston 1962
 - Unpaired N state stable!

- Minimum at:
 - $\Delta_0 \approx 8e^{-2}\mu \exp\left[\frac{\pi}{2k_Fa_s}\right]$
 - Usual BCS pairing
 - BCS won’t polarize! Sarma 1963

- True solution is phase separated in such regimes
First-order BCS-to-N transition

- Polarization (P) and pairing (\(\Delta\)) jump at first-order BCS-N transition

BCS regime phase diagram:

- Paired BCS phase: \(P = 0\)
- Phase sep. for arbitrarily small \(P\)
- Below solid line: N phase unstable via first-order transition \(P_{c2} \propto \Delta_0\)
- Thin window of inhomogeneous FFLO state (FFLO-N continuous trans.)

BCS

\(n_\uparrow = n_\downarrow\)

Normal

\(n_\uparrow > n_\downarrow\)

- Polarization \(P < P_c\): cannot be attained for a homogeneous phase
- Phase separation to achieve imposed polarization
FFLO state

- Excess spin \uparrow: Larger Fermi surface $p_{F\uparrow} \propto n_{\uparrow}^{1/3}$, $p_{F\downarrow} \propto n_{\downarrow}^{1/3}$

- Pairing of low-energy states near Fermi surface: $Q \equiv p_{F\uparrow} - p_{F\downarrow}$

 Cooper pairs have finite momentum! $\Delta(r) \propto \cos[Q \cdot r]$
 - Breaks rotational and translational symmetry

- Evaded observation in condensed-matter systems
 - Disorder
 - Coupling of physical magnetic field to orbital electron motion
 - Possibly observed in CeCoIn$_5$ Radovan et al Nature 2003 Bianchi et al PRL 2003

- Motivation: Observe FFLO in cold-atom experiment?
 - Perfectly clean; Purely Zeeman coupling
 - Spontaneous crystalline order observable in time-of-flight exp’ts

Fulde & Ferrell PR 1964; Larkin & Ovchinnikov JETP 1965
Predictions for FFLO regime

- Simplest FFLO-type state: \(\Delta(r) = \Delta_Q \exp[iQ \cdot r] \)

 - More generally: \(\Delta(r) = \sum_Q \Delta_Q \exp[iQ \cdot r] \)

 Bowers & Rajagopal PRD 02

- \(P_{c2} < P_{FFLO} \) are \(\sim \exp \left[-\frac{c}{k_F |a_s|} \right] \)

- Large detuning: \(\frac{P_{FFLO}}{P_{c2}} \approx 1.07 \)

- \(P_{FFLO} \) crosses \(P_{c2} \) at \(-\frac{1}{k_F a_s} \approx 0.5 \)

 FFLO no longer globally stable

- Critical polarization \(P_{FFLO} \approx \frac{3}{2} \frac{\eta \Delta}{\varepsilon_F} \)

 Estimate using exp’t parameters

 Chin et al Science 2004

- FFLO wavevector: \(Q \approx 2\eta \lambda \frac{\Delta}{\hbar \varepsilon_F} \)

- Phase separation: SF-FFLO coexistence underneath \(P_{FFLO} \)

 Still observable in time of flight
Mean-field theory predictions: Positive detuning

- $P_{c1}=0$: Phase Separation for any small P
 - Polarization above which system phase sep.

- $P_{c2}=0.93$ at unitarity
 - Polarization below which system phase sep.

- Phase separated regime: Two phases in chemical equilibrium with different densities
 - Harmonic trap: higher density phase (superfluid) falls to the center

Shell structure: Imposed polarization goes to the edge, center paired!
Evidence for shell structure in phase separation regime

- Partridge et al Science 2006: Density data
 - Integrated in one direction
 - Highly prolate trapping potential
 \[N_\uparrow = 8.6 \times 10^4 \]
 \[N_\downarrow = 6.5 \times 10^4 \]

- Shin et al PRL 2006: Shrinking BCS core with increasing polarization

Plots: Integrated Magnetization
\[M(r) = n_\uparrow(r) - n_\downarrow(r) \]

- Quantitative understanding: Go beyond local density approximation to handle trap
 Kinnunen et al, Yi & Duan, Chevy, De Silva & Mueller, Imambekov et al, …

Next: BEC regime
BEC superfluid under applied h

- $h = 0$: BEC superfluid
 - Paired molecular bosons
 - Fermions gapped: $\mu < 0$

 $$\mu = -\frac{\hbar^2}{2ma_s^2}$$

 - vacuum of fermions; BEC of pairs

- Apply h to induce polarization P

 $$\mu_\uparrow = \mu + h$$

 $$\mu_\downarrow = \mu - h$$

 Tilt Fermion bands!

 - Upper fermion band dips below mol. level

 - Pairs break up into spin-\uparrow fermions

 - Coherent mixture of BEC and spin-\uparrow Fermi gas

 Magnetic superfluid (SF_M)

Next: SF_M
Magnetic superfluid (S_{FM}) phase

- **Negative detuning:** BEC tolerates small polarization
 - Unlike BCS regime
 - Minority spins pair; excess majority form Fermi sea

- **Spin-up fermion & BEC are miscible fluids**
 - Analogous to 3He-4He mixtures!

- **First-order transition to phase sep. with increasing P**
 - Compute molecular scattering length vs. \hbar
 \[a_m(\hbar) = 2a_s F(h/|\mu|) \]
 \[F(0) = 1 \]
 - $F(x)$ vanishes at $x = 1.30$

- **Stability requires $a_m > 0$**
 - Instability at: $h_{c1} \approx 1.30 \frac{\hbar^2}{2ma_s^2}$
 - determined more accurately by minimizing E_G
BEC regime phase diagram

• SFM phase: **First-order** transition into regime of phase separation

 – P_{c1}: first-order trans. to phase sep.

 – Deep BEC: 2nd-order trans. to fully polarized

 – **Red** dot: tricritical point

 – $P_{c2} = 1$ except close to unitarity

 Add one spin \downarrow to Fermi sea of \uparrow: Forms Pair

• Bogoliubov sound velocity in SF$_M$: Driven to zero near transition at P_{c1}

 – Relation between a_m and sound vel.

 – Transition to phase sep. precedes vanishing

Next: LDA in BEC regime
Magnetic superfluid in a trap: LDA

Small P: Interior SF_M shell

Three shells:

Large P: SF_M surrounded by Normal

Two shells:

$n_m(r) = \text{molecular density}$

$M(r)$

$\frac{r}{R_{TF}}$

SF, SF_M, N
Global phase diagram

\[P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} \]

Top axis: \(N_\downarrow = 0 \)
(Pure Normal)

Bottom axis: Smooth BEC-BCS crossover phase

"Magnetic superfluid": Tightly-bound molecules and spin-polarized Fermi sea

- 1st order
- 2nd

FFLO – \(N \) 2nd

\(P_{c1}, P_{c2} \)

Recent other work: Finite T: Parish et al, Chien et al…
Including trap: Kinnunen et al, Duan et al, …
Dynamics of phase separation: Lamacraft et al

Next: Tricritical
Tricritical point at nonzero T

Extension to finite T: (Parish et al, Chien et al)

P_{c1} P_{c2} FFLO

P tricritical point

$\frac{1}{k_Fa_s}$

δ_c δ_M δ_s 0 1 2

SF$_M$ PS N

By analogy:

T

$2nd$

SF_M PS

P_{c1} P_{c2}

$1st$

$3He-4He$ mixtures

$3He$ fraction

Other possibilities:

Blume Emery Griffiths 70
Concluding remarks

• Cold-atom experiments studying superconductivity of paired fermions
 New context for strongly-correlated condensed-matter physics

• Other examples of interacting fermion systems: Superconductors, quark matter, nuclear matter, ...

• Experiments already observed crossover between BEC and BCS states

• Different numbers of \(\uparrow \), \(\downarrow \): Simple crossover “fractured”
 – Phase transitions
 – Phase separation
 – Magnetic superfluidity
 – Fulde-Ferrell-Larkin-Ovchinnikov states

• Future work:
 – Finite-T phase diagram near unitary point
 – Vicinity of the tricritical point
 – Strongly coupled normal state (recent MIT experiments)
 – Experimental signatures of FFLO and SF\(_M\)