Schedule Mar 15, 2013
Optimal Control of Vibrational Cooling
Daniel Reich (Univ. Kassel)

Daniel M. Reich, Christiane P. Koch

Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.



Author entry (protected)