Cold YbF search for the electron EDM status and plans E.A. Hinds

Centre for Cold Matter Imperial College London

KITP, 12 March 2013

Our experiment uses a polar molecule - YbF

EDM interaction energy is a million times larger (mHz)
needs "only" nG stray B field control

Distribution of edm/o_{edm} -5 0 5

bootstrap method determines probability distribution

6

Current status

Previous result - Tl atoms Regan et al. (PRL 2002)
d_e < 1.6 × 10⁻²⁷ e.cm
90% confidence Liu/Kelley (PRL 1992)
89% confidence Dzuba/Flambaum (PRL 2009)
79% confidence Nataraj et al. (PRL 2011)

Kara et al. NJP 14, 103051 (2012)

• 2011 result - YbF Hudson *et al.* (Nature 2011)

 $d_{e} = (-2.4 \pm 5.7 \pm 1.5) \times 10^{-28} \text{ e.cm}$ $\int \int \text{-systematic} - \text{limited}$ $68\% \text{ statistical} \int \text{-systematic} - \text{limited}$ by statistical noise

 $d_e < 1 \times 10^{-27}$ e.cm with 90% confidence

How we are improving this

- Phase 1 Small upgrades: 3 x improvement - in progress
- Phase 2 Cryogenic source of YbF – almost ready

Phase 3 Laser-cooled molecular fountain - being developed

Phase 2 - cryogenic buffer gas source of YbF

YbF distribution in the cell (absorption images) YbF is by trapped in vortices inside cell

YbF density calculated using Star-ccm+

Better cell design required, but this is what we have

YbF beam velocity: 50 - 200 m/s intensity: 1-2 x 10¹⁰ /sr/pulse

Time profile of YbF beam

Cryogenic beam spectrum

10 × more molecules/pulse

4 × longer interaction time (slower beam) => 10 × better EDM signal:noise ratio

=> access to mid 10⁻²⁹ e.cm range

Learning by slowing a 600m/s CaF beam

velocity from same simulation

Thermal beam source to load YbF optical molasses

Application to YbF 3D optical molasses can capture the slow molecules

Tarbutt et al. arXiv:1302.2870

Some eEDM experiments in preparation

Acme collab. Harvard/Yale ThO : ${}^{3}\Delta_{1}$ metastable beam

Leanhardt group, Michigan $WC: {}^{3}\Delta_{1}$ ground state beam

Cornel Group JILA $HfF^{+}: {}^{3}\Delta_{1}$ ground state ion trap

Atom experiments in preparation

Cs in optical lattice: Weiss group, Penn State (next year?) Heinzen group, Texas (2 years?)

Fr in a MOT: Tohoku/Osaka (starting 2014)

Current status of EDMs

Summary

e- EDM is a direct probe of physics beyond SM

specifically probes CP violation (how come we're here?)

we see a way to reach <10-30

Atto-eV molecular spectroscopy tells us about TeV particle physics: the electron is too round for MSSM!

Thanks to my colleagues...

Jony Hudson

EDM measurement: Joe Smallman Jack Devlin Dhiren Kara

Mike Tarbutt

Buffer gas cooling: Sarah Skoff Nick Bulleid Rich Hendricks

Ben Sauer

Laser cooling: Thom Wall Aki Matsushima Valentina Zhelyazkova Anne Cournol

Engineering and Physical Scienc Research Council

