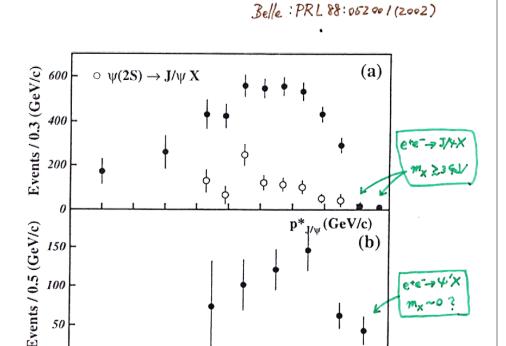
Inclusive and exclusive charmonium production at ete-collisions

K. Hagiwara (KEK)

2004. 3.10 @ KITE

Data from B factories :

- · Babar : PRL 87: 162002 (2001)
- · Bele: PRL 88: 052001 (2002) do/dp* doese doese*


$$G'(e^+e^- + J/4 \times) = /.47 \pm 0.10 \pm 0.13 \text{ pb}$$

$$P^{2} > 2 \text{ GeV} \begin{cases} 1.05 \pm 0.04 \pm 0.09 \text{ pb} & \text{all } J/4 \\ 0.72 \pm 0.08 \pm 1 & \text{pb} & (J/4) \text{ direct} & \text{eq} \\ 0.67 \pm 0.09 \pm 1 & \text{pb} & 4' & \text{eq} \end{cases}$$

- Belle: PRL89: 142001 (2002) $d\sigma/dM_X$ σ (ete-73/4 7c) $B(1c+34d_1) = 33^{+9}_{-6} \pm 9$ fb σ (ete-73/4 cE) $/\sigma$ (ete-73/4 X) = 0.59 +0.15 \pm 0.12
- · Belle: hep-ex/0306015 do/dMx
- B. Yabsley (Belle) @ APS (2003. 4.7) " $\sigma (e^{+}e^{-} \rightarrow J/4 \gamma_{c}) = 46 \pm 6 + \frac{17}{9} + b \quad \bullet \quad \bullet$ $\sigma (e^{+}e^{-} \rightarrow J/4 \gamma_{c}) = 18 \pm 8 \pm 7 + b \quad \bullet$ $\sigma (e^{+}e^{-} \rightarrow J/4 c\bar{c}) / \sigma (e^{+}e^{-} \rightarrow J/4 \times) = 0.82 \pm 0.15 \pm 0.14 \cdot \bullet$ > 0.48 (95%CL)

Our contributions:

- · Exclusive: KH, E. Kou, C.F. Qiao, PLB570, 39(2003) HKQ
- · Inclusive : KH, ZHLin, GHZhu, EKou, C FiQiao, hap-ph/0401246 HLKQZ
- · Exclusive: S. Dulat, KH, ZHLin, hap-ph/0402230 DHL

p*_{w(2S)} (GeV/c)

FIG. 3. c.m. momentum distributions of prompt charmonia, corrected for efficiency: (a) J/ψ (filled points) and J/ψ mesons from $\psi(2S) \rightarrow J/\psi X$ (open points); (b) $\psi(2S)$.

In the Color Singlet Model (CSM)

$$\frac{d\sigma (e^{+}e^{-} \rightarrow 4' \times)}{d\sigma (e^{+}e^{-} \rightarrow 7/4_{direct} \times)} \sim \frac{m_{\psi}^{2} P(4 \rightarrow ee)}{m_{\psi}^{2} P(4 \rightarrow ee)} \sim 0.6$$

$$\Rightarrow \text{ We study } e^{+}e^{-} \rightarrow 3/4_{direct} \times \text{ first.}$$

Here small Color-Octet contribution?

New $M_{ m recoil}$ fit with all charmonium states

- the fit allows all states: $\eta_c, \, \psi, \, \chi_{cJ}, \, \eta_c(2S), \, \psi(2S)$
- $\eta_c,\chi_{c0},\eta_c(2S)$ are confirmed

unaffected by allowing for

- no signif. $\psi, \chi_{c1,c2}, \psi(2S)$ [90% C.L. limits dotted]
- $< 3 \text{MeV}/c^2 \text{ [e^+e^-} \rightarrow \gamma \psi(2S)]$ $M_{
 m recoil}$ scale calibrated to

most general fit

	3.8 GeV/c ²		
	3.4 3.4		
-	Recoil Mass(J/v)		
	2.6 R	Parameter de la constantina del constantina de la constantina de la constantina del constantina de la constantina de la constantina del constantina de	
% 02 05	2.2		

	default fit	
N	$M\left[{ m GeV}/c^2 ight]$	ь
179 ± 22	2.971 ± 0.006	10.6
0	fixed	Ì
72 ± 21	3.408 ± 0.009	3.8
0	fixed	1
97 ± 22	3.628 ± 0.007	4.9
0	fixed	1

Q	6.6	1	2.9	1	4.4	1
$M \left[{ m GeV}/c^2 ight]$	2.972 ± 0.007	fixed	3.409 ± 0.010	fixed	3.630 ± 0.008	fixed
N	175 ± 23	-9 ± 17	61 ± 21	-15 ± 19	108 ± 24	-38 ± 21

 $\chi_{c1} + \chi_{c2}$

 η_c J/ψ

 $\eta_c(2S)$ $\psi(2S)$

Belle
at
production
$c\bar{c}c\bar{c}$
1
-9 ₊ 9

APS 07-Apr-2003

9	1	3.8	1	4.9	1	
0000	fixed	3.408 ± 0.009	fixed	3.628 ± 0.007	fixed	

Bruce Yabsley

 $(c\overline{c})_{res}(c\overline{c})_{res}$

e+e

for

Cross-sections

30 - [(4 - 500)		K*20 (34.2)	43 fb (TH)
	M	7	

\$50 Car X=50 Car	43 th (TI
1-	

CHARMONIUM	$\psi(2S)$	18±8±7	< 64	•17±8±7	< 24	< 24	$•31\pm9\pm10$	< 18
HARM	$\eta_c(2S)$		1	ł	}	1	1	+
S	χ_{e2}	< 20	< 20	< 20	< 20	< 20	< 20	< 20
RUCTED	χ_{e1}	< 18	< 18	< 18	< 18	< 18	< 18	< 18
SUC	χ_{c0}	1	1	1	1	1	ł	1

 5 ± 4

Xeo χ_{c1}

RECOIT CHARMONIUM

 $46 \pm 6^{+7}_{-9}$

2 0

C

W

œ

7 Pc

 $9 \mp 9 \mp$

•25

 $\eta_c(2S)$ $\psi(2S)$

 ∞

> 16

NRQCD prediction; The $J/\psi\,\eta_c$ result is O(10) imes

the $J/\psi \ J/\psi$ limit is probing the region predicted by

APS 07-Apr-2003

BLB

Number of J/ψ from data

 $J/\psi c\bar{c}$)/ σ (e+e-

 $\sigma(e^+e^-$

Updated

$\times 10^3$ ± 0.09) (4.44) $3.7\,\mathrm{GeV}/c^2$ 2.0 GeV && Mrecoil > Λ

 *d

associated state	D ⁰ → K _π	D ⁰ → K3π	† 0	† * O	۸۵+
Nobs	49.6 ± 13.3	53.0 ± 21.2	56.2 ± 15.4	23.8 ± 9.4	3.0 ± 4.2
N ⁰	$(3.10 \pm 0.83) \times 10^3$	$(3.31 \pm 1.32) \times 10^3$	$(2.08 \pm 0.57) \times 10^3$	$(1.83 \pm 0.72) \times 10^3$	$(0.17 \pm 0.23) \times 10^3$
LUND rate in cc	1.19	1.19	0.43	0.22	0.13
$N(J/\psi c\bar{c})/N(J/\psi X))$	0.59 ± 0.16	0.62 ± 0.25	0.59 ± 0.16 0.62 ± 0.25 1.09 ± 0.30 1.87 ± 0.74 0.29 ± 0.41	1.87 ± 0.74	0.29 ± 0.41
AVERAGE			0.67 ± 0.12		

Can also determine the rate independent of car c fragmentation by taking

$$\frac{0.5 \times \sum N_i}{N_{J/\psi}} = 0.5 \times \frac{(7240 \pm 1240) \times 10^3}{(4438 \pm 88) \times 10^3}$$

$$= 0.82 \pm 0.15 \pm 0.14 \iff 0.51_{-0.13}^{+0.15} \pm 0.12$$

$$> 0.48 \text{ at } 95\% \text{ CL}$$

$$8.0.2 \pm 0.15$$

Notes:

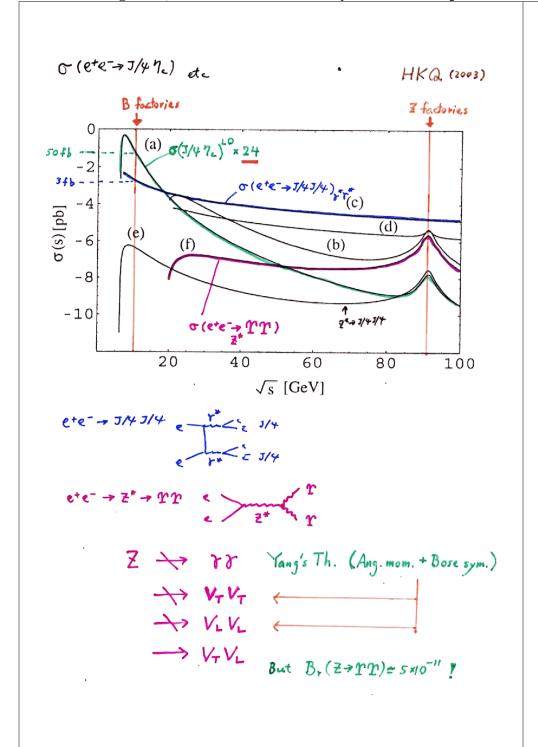
- $\Xi_c,~\Omega_c^0$ and $(car c)_{\mathrm{res}}X$ and is therefore conservative this last number ignores
- 0.03) to Lund is small (rate for other baryons is correction acc.

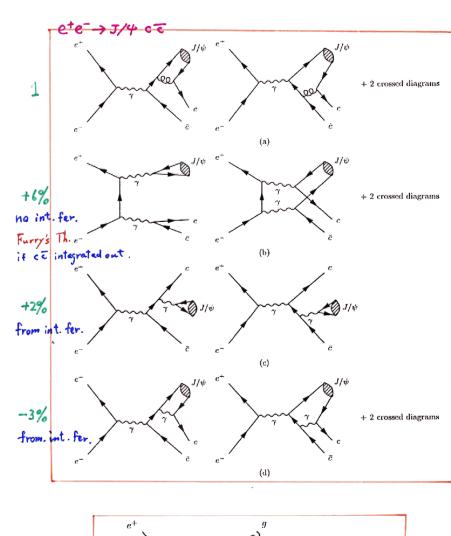
APS 07-Apr-2003

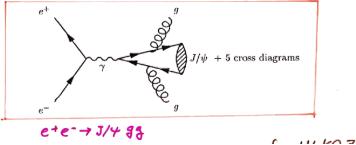
e+e-

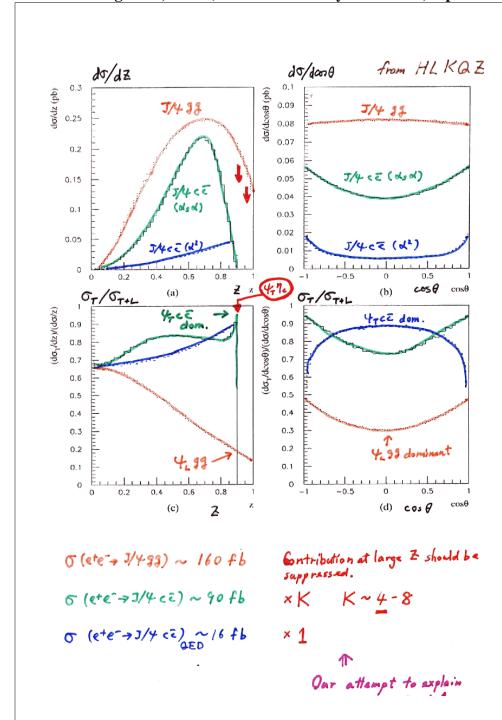
 $\rightarrow c\bar{c}c\bar{c}$ production at Belle

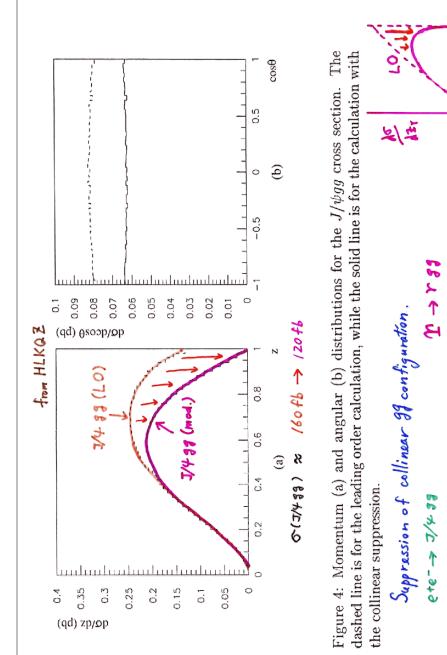
Bruce Yabsley

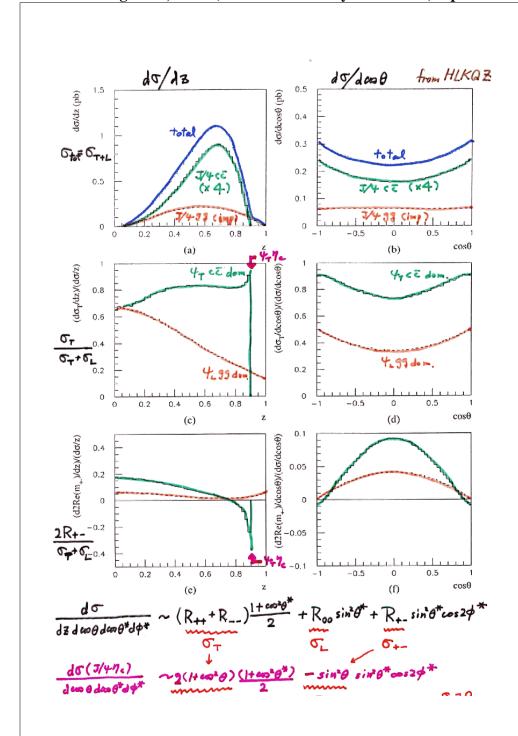




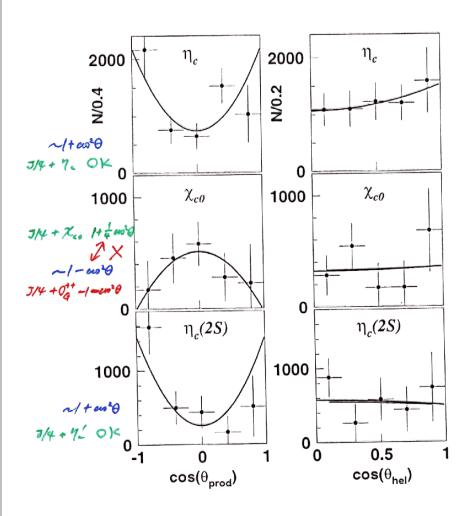

- $101 \, \mathrm{fb}^{-1}$ from PRL 89, 142001 (2002), 46.2 fb⁻¹ $\rightarrow c\bar{c}c\bar{c}$ study Belle has updated its e⁺e⁻
- all previous results are confirmed
- $+ \gamma^* \gamma^* + \psi \psi$ prediction probe the e⁺e⁻ Braaten are beginning to of Bodwin, Lee, ×
- however, our $\psi \, \eta_c$ yield is unaffected by allowing for $\psi \, \psi$
- method to reduce systematic error & model dependence $J/\psi c\bar{c})/\sigma(\mathrm{e^+e^-}$ an updated $\sigma(\mathrm{e^+e^-} \rightarrow$ we use
- $\sigma_{\psi car c}/\sigma_{\psi X}=0.82\pm0.15\pm0.14$ above $3.7\,{
 m GeV}/c^2$
- all numbers are preliminary
- angular analysis) a thorough study (incl. $\approx 150\,\mathrm{fb}^{-1}$, publication later this year we plan
- charmonium it seems that NRQCD is in real trouble with


APS 07-Apr-2003





PR L90:032001 (2003) PRD 67:074035 (2003)



in Second, 2003. 10.9 Tentative Summary B factory data on ete- > 3/4 X (Barbar+Belle) $\sigma(e^+e^- \rightarrow (J/4)_{direct} \times ; p^* > 2G_eV) = 720 \pm \frac{150}{190} \text{ fb}$ O(e+e-→J/4 cz)/O(e+e-→J/4x) = 10.59 ± 0.19 Belle $\frac{d\sigma}{dz}$ (ete-+ $(\pi/4)_{direct}$ X) at high Z (suppression at Mx<Myc) Belle may be explained by Color Singlet Model whose LO predictions 5 (e+e- → 1/4 cē) LO = 90fb o (e+e- → J/4 gg) LO = 160+6 if we take into account (HLKQZ) Collinear suppression of do (ete - 1/499) at large Z. Large K factor of K≈4 for do (ete-+1/4 c =). ⇒ 5 (ete -> (1/4) direct X) = (360 + 120) fb = 480 fb $\sigma = \frac{360}{480} = 0.75$ > Predictions on ded dead down dopend on K Large K factor for delete - 1/4 (=) matches more smoothly to $\frac{\sigma\left(e^{\dagger}e^{-}\rightarrow\sqrt{4}\cdot7c\right)^{EXP}}{\sigma\left(e^{\dagger}e^{-}\rightarrow\sqrt{4}\cdot7c\right)^{LO}}\approx\frac{46\pm1/4b}{2.34b}\approx20\pm5$ (HQZ)

More data on inclusive distributions and more exclusive channels will be available soon.

prod n & helicity angle distributions measured; used for eff y estimates

APS 07-Apr-2003

$$e^+e^- \rightarrow c\overline{c}c\overline{c}$$

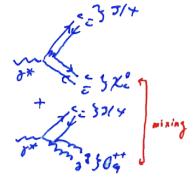
KEK-TH-943 hep-ph/0402230 2004

Scalar charmonium and glueball mixing in $e^+e^- \rightarrow J/\psi X$

S. Dulat

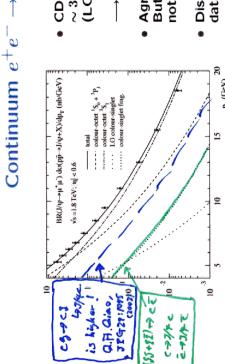
Department of Physics, Xinjiang University, Urumqi, 830046, P.R. China

K. Hagiwara and Z.-H. Lin


Theory Group, KEK, Tsukuba, Ibaraki 305-0801, Japan

Abstract

We study the possibility of the scalar charmonium and glueball mixing in e^+e^- annihilation at $\sqrt{s}=10.6$ GeV. The effects can be used to explain the unexpected large cross section (12 ± 4 fb) and the anomalous angular distribution ($\alpha=-1.1^{+0.8}_{-0.6}$) of the exclusive $e^+e^- \rightarrow J/\psi\chi_{c0}$ process observed by Belle experiments at KEKB. We calculate the helicity amplitudes for the process $e^+e^- \rightarrow J/\psi H(0^{++})$ in NRQCD, where $H(0^{++})$ is the mixed state. We present a detailed analysis on the total cross section and various angular asymmetries which could be useful to reveal the existence of the scalar glueball state.


PACS number(s): 12.39.Mk, 13.60.Le

$$e^+e^- \rightarrow 3/4 + \chi^2$$

 $\rightarrow 3/4 + 0^{++}_q$

of the referen

from K. Abe (Balla) Isateura

- CDF $\sigma(\bar{p}p \to J\psi + X)$ ~ 30 times larger than PQCD (LO color-singlet only)
- → development of NRQCD
- Agrees with CDF cross section. But HERA cross section data do not require color-octet.
- Disagrees with CDF polarization data.

NRQCD: Braaten, Fleming, Yuan, hep-ph/9602374v1

- Rigorous treatment of $c\bar{c}$ with similar momenta in all orders pf α_s (both color-singlet and color-octet)
- Factorization of $car c o J/\psi$ using expansion of v between c and ar c

$$d\sigma(J/\psi X) = d\hat{\sigma}(c\bar{c}[\underline{1},{}^3S_1]) < O_1^{J/\psi} > + d\hat{\sigma}(c\bar{c}[\underline{8},{}^{2S+1}S_{0,1},{}^{2S+1}P_J]) < O_8^{J/\psi} >$$

KH, ZMin, CRaise, M. Wang, in pour すなのかけれ product unpolonis 00/01/00 unt for Ulivert' 3/4 production ひまなかり Can we