Automated resummation of QCD

final state observables

Giulia Zanderighi

- In collaboration with
A. Banfi (Amsterdam) and G. Salam (Paris)

Jet observables

- Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state in high energy collisions

Jet observables

- Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state in high energy collisions

Example: the Thrust measures longitudinal particle alignment

$$
T \equiv \frac{1}{Q} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|=\frac{1}{Q} \sum_{i}\left|p_{i z}\right|
$$

Jet observables

- Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state in high energy collisions

Example: the Thrust measures longitudinal particle alignment

$$
T \equiv \frac{1}{Q} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|=\frac{1}{Q} \sum_{i}\left|p_{i z}\right|
$$

Pencil-like event: $\tau \equiv 1-T \ll 1$ Planar event: $T \simeq 2 / 3$

Event shapes

Event shapes are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation

Event shapes

Event shapes are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running

Event shapes

Event shapes are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running
- Measurements/cross checks of the values of the colour factors of QCD

Event shapes

Event shapes are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running
- Measurements/cross checks of the values of the colour factors of QCD
- Studies of connection between parton-level (perturbative description of quarks and gluons) and hadron-level (the real)

Large Logarithms

Given an event shape (or a jet-rate) V then
$V \ll 1 \equiv$ going to the Born limit \equiv forbidding gluon radiation

Large Logarithms

Given an event shape (or a jet-rate) V then
$V \ll 1 \equiv$ going to the Born limit \equiv forbidding gluon radiation
This has an unequal effect on real and virtual contributions

- hard, large angle emissions forbidden (no additional jet)
- soft and collinear real emissions are constrained

- virtual corrections are unaffected

$$
-\frac{d E}{E} \frac{d \theta}{\theta} \alpha_{s}(\theta E)
$$

Large Logarithms

Given an event shape (or a jet-rate) V then
$V \ll 1 \equiv$ going to the Born limit \equiv forbidding gluon radiation
This has an unequal effect on real and virtual contributions

- hard, large angle emissions forbidden (no additional jet)
- soft and collinear real emissions are constrained

- virtual corrections are unaffected

$$
-\frac{d E}{E} \frac{d \theta}{\theta} \alpha_{s}(\theta E)
$$

Imbalance leads to large logarithms in distributions

$$
\operatorname{Prob}(V<v) \simeq 1-\frac{\# \alpha_{s} C_{F}}{2 \pi} \ln ^{2} v+\ldots \quad\left[v \ll 1 \quad \Rightarrow \quad \frac{\alpha_{s} C_{F}}{2 \pi} \ln ^{2} v=\mathcal{O}(1)\right]
$$

which need to be resummed to all orders

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{d E}{E} \frac{d \theta}{\theta}$

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{d E}{E} \frac{d \theta}{\theta}$

Second half of the history: The observable definition analyse the observable \& use Mellin transforms

$$
1-T \simeq \frac{1}{Q} \sum_{i=1}^{n} \frac{E_{i} \theta_{i}^{2}}{2} \quad \longrightarrow \quad \Theta(1-T<\tau)=\int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \prod_{i=1}^{n} e^{-\nu \frac{E_{i} \theta_{i}^{2}}{2 Q}}
$$

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{d E}{E} \frac{d \theta}{\theta}$

Second half of the history: The observable definition analyse the observable \& use Mellin transforms

$$
1-T \simeq \frac{1}{Q} \sum_{i=1}^{n} \frac{E_{i} \theta_{i}^{2}}{2} \quad \longrightarrow \quad \Theta(1-T<\tau)=\int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \prod_{i=1}^{n} e^{-\frac{E_{i} \theta_{i}^{2}}{2 Q}}
$$

THE ANSWER

$$
\Sigma(\tau) \int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \exp \left[\int \frac{d \theta}{\theta} \frac{d E}{E} \alpha_{s}(E \theta)\left(e^{-\nu \frac{E_{i} \theta_{i}^{2}}{2 Q}}-1\right)\right]
$$

A selection of analytical NLL predictions

$e^{+} e^{-} \rightarrow 2$ jets

- S. Catani, G. Turnock, B. R. Webber and L. Trentadue, Thrust distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 263 (1991) 491.
- S. Catani, G. Turnock and B. R. Webber, Heavy jet mass distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 272 (1991) 368.
-S. Catani, Yu. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, New clustering algorithm for multi-jet cross-sections in $e^{+} e^{-}$annihilation, Phys. Lett. B 269 (1991) 432.
- S. Catani, L. Trentadue, G. Turnock and B. R. Webber, Resummation of large logarithms in $e^{+} e^{-}$event shape distributions, Nucl. Phys. B 407 (1993) 3.
- S. Catani, G. Turnock and B. R. Webber, Jet broadening measures in $e^{+} e^{-}$annihilation, Phys. Lett. B 295 (1992) 269.
- G. Dissertori and M. Schmelling, An Improved theoretical prediction for the two jet rate in $e^{+} e^{-}$annihilation, Phys. Lett. B 361 (1995) 167.
- Y. L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 9801 (1998) 011
- S. Catani and B. R. Webber, Resummed C-parameter distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 427 (1998) 377
- S. J. Burby and E. W. Glover, Resumming the light hemisphere mass and narrow jet broadening distributions in $e^{+} e^{-}$annihilation, JHEP 0104 (2001) 029
- M. Dasgupta and G. Salam, Resummation of non-global QCD observables, Phys. Lett. B 512 (2001) 323
- C. F. Berger, T. Kucs and G. Sterman, Event shape / energy flow correlations, Phys. Rev. D 68 (2003) 014012

DIS $1+1$ jet

- V. Antonelli, M. Dasgupta and G. Salam, Resummation of thrust distributions in DIS, JHEP 0002 (2000) 001
- M. Dasgupta and G. Salam, Resummation of the jet broadening in DIS, Eur. Phys. J. C 24 (2002) 213
- M. Dasgupta and G. Salam, Resummed event-shape variables in DIS, JHEP 0208 (2002) 032

$e^{+} e^{-}$, DY, DIS 3 jets

- A. Banfi, G. Marchesini, Y. L. Dokshitzer and GZ, QCD analysis of near-to-planar 3-jet events, JHEP 0007 (2000) 002
- A. Banfi , Y. L. Dokshitzer, G. Marchesini and GZ, Near-to-planar 3-jet events in and beyond QCD perturbation theory, Phys. Lett. B 508 (2001) 269
- A. Banfi , Y. L. Dokshitzer, G. Marchesini and GZ, QCD analysis of D-parameter in near-to-planar three-jet events, JHEP 0105 (2001) 040
- A. Banfi , G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in hadronic Z0 production, JHEP 0108 (2001) 047
- A. Banfi , G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in DIS with high p(t) jets, JHEP 0111 (2001) 066
- A. Banfi, G. Marchesini and G. Smye, Azimuthal correlation in DIS, JHEP 0204 (2002) 024
- C. F. Berger, T. Kucs and G. Sterman, Energy flow in interjet radiation, Phys. Rev. D 65, 094031 (2002)
~ 1 observable per article

A selection of analytical NLL predictions

$e^{+} e^{-} \rightarrow 2$ jets
\checkmark S. Catani, G. Turnock, B. R. Webber and L. Trentadue, Thrust distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 263 (1991) 491.
\checkmark S. Catani, G. Turnock and B. R. Webber, Heavy jet mass distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 272 (1991) 368.
\checkmark S. Catani, Yu. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, New clustering algorithm for multi-jet cross-sections in $e^{+} e^{-}$annihilation, Phys. Lett. B 269 (1991) 432.
\checkmark S. Catani, L. Trentadue, G. Turnock and B. R. Webber, Resummation of large logarithms in $e^{+} e^{-}$event shape distributions, Nucl. Phys. B 407 (1993) 3.
x S. Catani, G. Turnock and B. R. Webber, Jet broadening measures in $e^{+} e^{-}$annihilation, Phys. Lett. B 295 (1992) 269.
X G. Dissertori and M. Schmelling, An Improved theoretical prediction for the two jet rate in $e^{+} e^{-}$annihilation, Phys. Lett. B 361 (1995) 167. \checkmark Y. L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 9801 (1998) 011
\checkmark S. Catani and B. R. Webber, Resummed C-parameter distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 427 (1998) 377
x S. J. Burby and E. W. Glover, Resumming the light hemisphere mass and narrow jet broadening distributions in $e^{+} e^{-}$annihilation, JHEP 0104 (2001) 029
\checkmark M. Dasgupta and G. Salam, Resummation of non-global QCD observables, Phys. Lett. B 512 (2001) 323
\checkmark C. F. Berger, T. Kucs and G. Sterman, Event shape / energy flow correlations, Phys. Rev. D 68 (2003) 014012

DIS $1+1$ jet

X V. Antonelli, M. Dasgupta and G. Salam, Resummation of thrust distributions in DIS, JHEP 0002 (2000) 001
\checkmark M. Dasgupta and G. Salam, Resummation of the jet broadening in DIS, Eur. Phys. J. C 24 (2002) 213
\checkmark M. Dasgupta and G. Salam, Resummed event-shape variables in DIS, JHEP 0208 (2002) 032

$e^{+} e^{-}$, DY, DIS 3 jets

x A. Banfi, G. Marchesini, Y. L. Dokshitzer and GZ, QCD analysis of near-to-planar 3-jet events, JHEP 0007 (2000) 002
\checkmark A. Banfi , Y. L. Dokshitzer, G. Marchesini and GZ, Near-to-planar 3-jet events in and beyond QCD perturbation theory, Phys. Lett. B 508 (2001) 269
\checkmark A. Banfi, Y. L. Dokshitzer, G. Marchesini and GZ, QCD analysis of D-parameter in near-to-planar three-jet events, JHEP 0105 (2001) 040
\checkmark A. Banfi , G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in hadronic Z0 production, JHEP 0108 (2001) 047
\checkmark A. Banfi , G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in DIS with high $p(t)$ jets, JHEP 0111 (2001) 066
\checkmark A. Banfi, G. Marchesini and G. Smye, Azimuthal correlation in DIS, JHEP 0204 (2002) 024
X C. F. Berger, T. Kucs and G. Sterman, Energy flow in interjet radiation, Phys. Rev. D 65, 094031 (2002)

Error prone business [x $\sim 30 \%$]!

Automated resummed predictions

Our goal: develop a computer code which resums final state observables at NLL accuracy in an automated way - as for fixed order calculations.

The user just
x fixes the Born process and the number of hard jets (legs)
x provides the definition of the observable in the form of a computer routine

- To achieve this one needs to understand the origin of all NLL terms in observable distributions in a general way.

$$
\Sigma(v)={ }_{N L L} \sum_{\text {sub. }} \int[d \Phi]_{\text {hard }} \Sigma_{s}(v) \cdot \mathcal{F}\left(R^{\prime}\right)
$$

Banfi , Salam, GZ hep-ph/0304148
Analytical resummation for the "easy" Σ_{s} : pure LL and NLL terms

$$
\Sigma_{s}(v)=\prod_{\ell=1}^{n_{i n c}} \underbrace{f_{\ell}\left(v^{\frac{2}{a+b_{\ell}}} \mu_{F}^{2}\right)}_{\text {pdfs }} \otimes \prod_{\ell=1}^{N} \underbrace{J_{\ell}(L)}_{\text {jet function }} \cdot \underbrace{S(T(L / a))}_{\text {soft }}
$$

- soft and collinear emission \Rightarrow jet function $J_{\ell}(L)$ (all LL Sudakov suppression and some NLL terms)
- hard collinear splitting \Rightarrow evolution of the pdfs
- soft large angle
\Rightarrow QCD coherence and geometry dependence in S
the "difficult" \mathcal{F} is computed numerically but is by construction a pure NLL function

Single emission properties

(B)

IDEA: Define a simpler observable with the same double logs but factorizes trivially

$$
V\left(k_{1}, \ldots k_{n}\right) \Rightarrow V_{s} \equiv \max \left[V\left(k_{1}\right), \ldots, V\left(k_{n}\right)\right]
$$

- Simple factorization $\Theta\left(V_{s}-v\right)=\prod_{i} \Theta\left(V_{i}-v\right) \Rightarrow$ analytical resummation straightforward!

Single emission properties

(B)

IDEA: Define a simpler observable with the same double logs but factorizes trivially

$$
V\left(k_{1}, \ldots k_{n}\right) \Rightarrow V_{s} \equiv \max \left[V\left(k_{1}\right), \ldots, V\left(k_{n}\right)\right]
$$

- Simple factorization $\Theta\left(V_{s}-v\right)=\prod_{i} \Theta\left(V_{i}-v\right) \Rightarrow$ analytical resummation straightforward!

Fix a Born event and emit a soft gluon k collinear to a given hard leg ℓ.
We parametrize

$$
V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)
$$

$$
\begin{aligned}
k_{t} & \Rightarrow \text { transverse momentum } \\
\eta & \Rightarrow \text { rapidity } \\
\phi & \Rightarrow \text { azimuth }
\end{aligned}
$$

$\checkmark \Sigma_{s}$ known given the (automatically determined) quantities $a_{\ell}, b_{\ell}, d_{\ell}, g_{\ell}(\phi)$

Single emission properties

15. IDEA: Define a simpler observable with the same double logs but factorizes trivially

$$
V\left(k_{1}, \ldots k_{n}\right) \Rightarrow V_{s} \equiv \max \left[V\left(k_{1}\right), \ldots, V\left(k_{n}\right)\right]
$$

- Simple factorization $\Theta\left(V_{s}-v\right)=\prod_{i} \Theta\left(V_{i}-v\right) \Rightarrow$ analytical resummation straightforward!

Fix a Born event and emit a soft gluon k collinear to a given hard leg ℓ.
We parametrize

$$
V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)
$$

$$
\begin{aligned}
k_{t} & \Rightarrow \text { transverse momentum } \\
\eta & \Rightarrow \text { rapidity } \\
\phi & \Rightarrow \text { azimuth }
\end{aligned}
$$

$\checkmark \Sigma_{s}$ known given the (automatically determined) quantities $a_{\ell}, b_{\ell}, d_{\ell}, g_{\ell}(\phi)$

To resum $V\left(k_{1} \ldots k_{n}\right)$ one needs to account for the observable specific mismatch between $V\left(k_{1}, \ldots k_{n}\right)$ and $V_{s} \Rightarrow$ multiple emission effects

Multiple emission effects

The function \mathcal{F} which encodes the information on how precisely the observable depends on multiple emissions, e. g.

- if $V\left(k_{1}, \ldots k_{n}\right)=\max \left\{V\left(k_{1}, \ldots V\left(k_{n}\right)\right\} \quad \Longrightarrow \quad \mathcal{F}=1 \quad\left[y_{3}^{\text {Cam. }}\right]\right.$
- if $V\left(k_{1}, \ldots k_{n}\right)=V\left(k_{1}\right)+\cdots+V\left(k_{n}\right) \quad \Longrightarrow \quad \mathcal{F}=\frac{e^{-\gamma_{E} R^{\prime}}}{\Gamma\left(1+R^{\prime}\right)} \quad[\tau]$
- in general, compute \mathcal{F} via Monte Carlo event samples targeted to be observable

$$
\mathcal{F}=\left\langle\exp \left\{-R^{\prime} \ln \frac{V\left(k_{1}, \ldots k_{n}\right)}{\max \left\{V\left(k_{1}\right), \ldots V\left(k_{n}\right)\right\}}\right\}\right\rangle
$$

- Notation: $R^{\prime} \equiv-d R / d L$ with $R(v)$ the LL Sudakov exponent $\Sigma_{s}(v)=e^{-R(v)}$
$\Leftrightarrow R^{\prime}$ and so \mathcal{F} are pure NLL functions!

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)
While this might seem a long list

- practically the limiting condition is the requirement of globalness (all other conditions are satisfi ed by all observables resummed so far)

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)
While this might seem a long list

- practically the limiting condition is the requirement of globalness (all other conditions are satisfi ed by all observables resummed so far)
- the essential feature of the program is the ability to perform all checks automatically and to resum the observable only when correctness of the result is guaranteed at NLL

Exponentiation

Some observables have exponentiating double (and single) logs

$$
\mathrm{P}(v)=1-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v+\frac{1}{2} X^{2}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} v+\ldots
$$

Exponentiation

Some observables have exponentiating double logs, others do not, e.g. Jade-algorithm jet rates:

$$
\mathrm{P}_{\mathrm{Jade} 2-\mathrm{jet}}\left(y_{\mathrm{cut}}\right)=1-\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} y_{\mathrm{cut}}+\frac{1}{2} \cdot \frac{5}{6}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} y_{\mathrm{cut}}+\ldots
$$

Brown and Striling, Phys.Lett.B 252 (1990)

Exponentiation

Some observables have exponentiating double logs, others do not, e.g. Jade-algorithm jet rates:

$$
\mathrm{P}_{\mathrm{Jade} 2-\mathrm{jet}}\left(y_{\mathrm{cut}}\right)=1-\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} y_{\mathrm{cut}}+\frac{1}{2} \cdot \frac{5}{6}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} y_{\mathrm{cut}}+\ldots
$$

Brown and Striling, Phys.Lett.B 252 (1990)

- No one jet knows how to resum Double Logs, let alone what matrix-element ingredients are needed to achieve NLL accuracy!

Any automated approach to NLL resummation has better be able to establish whether an observables exponentiates

CAESAR: conquering resummations

Computer Automated Expert Semi-Analytical Resummation

© currently limited to global observables

- tested against all known global, exponentiable event shapes
- results from an early version used by the LEP-QCD-WG for fits of α_{s}
- can be applied to
- 2 \& 3 jets in $e^{+} e^{-}$
- $[1+1] \&[1+2]$ jets in $D I S$
- Drell-Yan +1 jet
- hadron-hadron dijet events [\Leftarrow first resummations]

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\rightarrow Problems with globalness \langle

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\Leftrightarrow Problems with globalness Δ

Directly global observables: $\eta_{0}>1$
x Transverse thrust

$$
T_{T}=\frac{1}{E_{T}} \max _{\bar{n}_{T}} \sum_{i}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T}} \sum_{i}\left|p_{i}^{o u t}\right|
$$

Predictions valid as long as

$$
|\log v|<\left(a+b_{\ell}\right)\left|\eta_{0}\right|
$$

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\Leftrightarrow Problems with globalness \vdots

Directly global observables: $\eta_{0}>1$ Indirectly global observables: $\eta_{0}=\mathcal{O}(1)$
x Transverse thrust

$$
T_{T}=\frac{1}{E_{T}} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T}} \sum_{i}\left|p_{i}^{\text {out }}\right|
$$

Predictions valid as long as

$$
|\log v|<\left(a+b_{\ell}\right)\left|\eta_{0}\right|
$$

x Transverse thrust

$$
T_{T}=\frac{1}{E_{T, \eta_{0}}}\left(\max _{\vec{n}_{T}\left|\eta_{i}\right|<\eta_{0}}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|-\left|\sum_{\left|\eta_{i}\right|<\eta_{0}} \vec{p}_{t i}\right|\right)
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T, \eta_{0}}}\left(\sum_{\left|\eta_{i}\right|<\eta_{0}}\left|p_{i}^{\text {out }}\right|+\left|\sum_{\left|\eta_{i}\right|<\eta_{0}} \vec{p}_{t i}\right|\right)
$$

Predictions valid as usual, but \mathcal{F} diverges at $R^{\prime}=R_{c}^{\prime}$

Sample output: the indirectly global thrust minor

x Tests on the observable

Test	result
check number of jets	T
all legs positive	T
global	T
continuously global	T
additive	F
exponentiate	T
eliminate subleading effects	T
opt. probe region exists	T

$\operatorname{leg} \ell$	a_{ℓ}	b_{ℓ}	$g_{\ell}(\phi)$	d_{ℓ}	$\left\langle\ln g_{\ell}(\phi)\right\rangle$
1	1	0	tabulated	2	-0.2201
2	1	0	tabulated	2	-0.2201
3	1	0	$\sin (\phi)$	2	$-\operatorname{Ln}(2)$
4	1	0	$\sin (\phi)$	2	$-\operatorname{Ln}(2)$

- Tables and plots generated automatically by CAESAR

$\mathcal{F}\left(R^{\prime}\right)$ for the indirectly global thrust minor

The multiple emission function $\mathcal{F}\left(R^{\prime}\right)$

Different result for different colour configurations

The indirectly global thrust minor

Dijets events at Tevatron run II regime

- run II regime $\sqrt{s}=1.96 \mathrm{TeV}$
cut on jet transverse energy $\mathrm{E}_{T}>50 \mathrm{GeV}$ and on rapidity $|\eta|<1$

Physical/mathematical/technical content of CAESAR

\checkmark Born processes currently implemented

\&	$e^{+} e^{-}$-collisions:	$e^{+} e^{-} \rightarrow 2$ jets	$e^{+} e^{-} \rightarrow 3$ jets
\&	DIS collision:	$p e \rightarrow 2$ jets	$p e \quad \rightarrow 3$ jets
\&	Drell Yan collision:	$p_{1} p_{2} \rightarrow Z_{0}+$ jet	
\&	Hadronic collisions:	$p_{1} p_{2} \rightarrow 2$ jets	
$\left(p_{i}=q, \bar{q}, g\right)$			

\checkmark Implementation of exact analytical formulas whenever possible
\checkmark Recoil in dipole method
Catani \& Seymour, Nucl. Phys. B 485 (1997) 291
\checkmark Evolution of colour charge (soft radiation at large angle)
Kidonakis, Oderda \& Sterman, Nucl. Phys. B 531 (1998) 365
\checkmark PDF evolution code
Dasgupta \& Salam, Eur. Phys. J. C 24, 213 (2002)
\checkmark Extended arbitrary precision arithmetic package
Bailey, RNR Technical Report RNR-94-013

Conclusions \& outlook

- In less inclusive regions fixed order calculations insufficient \Rightarrow resummation of logarithmic enhanced terms mandatory
- the use of resummations limited by availability of analytical results

Main result: rigorous procedure to perform resummation semi-analytically

Conclusions \& outlook

- In less inclusive regions fixed order calculations insufficient \Rightarrow resummation of logarithmic enhanced terms mandatory
- the use of resummations limited by availability of analytical results

Main result: rigorous procedure to perform resummation semi-analytically
Applications

- EX: first NLL predictions in hh collisions (indirectely globalness)
- TH: necessary and sufficient condition for exponentiation

Conclusions \& outlook

- In less inclusive regions fixed order calculations insufficient \Rightarrow resummation of logarithmic enhanced terms mandatory
- the use of resummations limited by availability of analytical results

Main result: rigorous procedure to perform resummation semi-analytically
Applications

- EX: first NLL predictions in hh collisions (indirectely globalness)
- TH: necessary and sufficient condition for exponentiation

Work in progress

- release CAESAR v1.0

Conclusions \& outlook

- In less inclusive regions fixed order calculations insufficient \Rightarrow resummation of logarithmic enhanced terms mandatory
- the use of resummations limited by availability of analytical results

Main result: rigorous procedure to perform resummation semi-analytically
Applications

- EX: first NLL predictions in hh collisions (indirectely globalness)
- TH: necessary and sufficient condition for exponentiation

Work in progress

- release CAESAR v1.0

To-do list

- automated matching of NLL with $\mathrm{NLO}(\mathrm{JET}++)$

Conclusions \& outlook

- In less inclusive regions fixed order calculations insufficient \Rightarrow resummation of logarithmic enhanced terms mandatory
- the use of resummations limited by availability of analytical results

Main result: rigorous procedure to perform resummation semi-analytically

Applications

- EX: first NLL predictions in hh collisions (indirectely globalness)
- TH: necessary and sufficient condition for exponentiation

Work in progress

- release CAESAR v1.0

To-do list

- automated matching of NLL with $\mathrm{NLO}(\mathrm{JET}++)$

Wish-list
e extension non-global observables and inclusion of mass effects

