How to disseminate our articles as efficiently as possible? Is Open Access a good solution?

Marie Farge
CNRS-INSMI
ENS Paris

January 19th 2017
KITP (Kavli Institute of Theoretical Physics)
University of California at Santa Barbara
Dissemin to boost green open access

‘Spot your own paywalled papers. Liberate them in one click!’

http://dissem.in
http://association.dissem.in
https://github.com/dissemin
The team Dissemin/CAPSH

Dissemin is supported by the nonprofit association CAPSH (Committee for the Accessibility of Publications in Sciences and Humanities) founded on 5th September 2015 by:

Antonin Delpeuch
Graduate student, Computer Science
École Normale Supérieure
France
Creator and main developer

"We need to take a stand against more traditional publishers"

Europe's Open Access Champion

Antoine Amarilli
Thomas Bourgeat
Marie Farge
Pablo Rauzy
How to list the articles of a researcher

Welcome to dissemin
Dissemin helps researchers ensure that their publications are freely available to their readers. Our free service spots paywalled papers and lets you upload them in one click to Zenodo, an innovative repository backed by the EU.

Still unsure? Read below or check out the FAQ.

Look up a researcher:

Marie Farge Search

or Start with ORCID

Green open access
Many researchers do not use their right to make their papers freely available online, in addition to the paywalled version offered by traditional publishers. This forces libraries to buy overpriced electronic subscriptions to journals, when they can afford them at all.

Open repositories
Uploading your papers on your own webpage is not enough. Such copies are less stable and harder to find than documents uploaded to well-indexed repositories. Dissemin searches for copies of your papers in a large collection of open repositories and tells you which ones cannot be accessed.
Papers authored by Marie Farge

This ORCID profile does not reference any publication. The ones shown below might be irrelevant or incomplete.

Seung-Bu Park, Pierre Gentine, Kai Schneider, Marie Farge
Coherent Structures in the Boundary and Cloud Layers: Role of Updrafts, Subsiding Shells, and Environmental Subsidence

Frank G. Jacobitz, Kai Schneider, Wouter J. T. Bos, Marie Farge
Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics

Marie Farge, Kai Schneider
Wavelet transforms and their applications to MHD and plasma turbulence: a review
Papers authored by Marie Farge

This ORCID profile does not reference any publication. The ones shown below might be irrelevant or incomplete.

2003

Marie Farge, Kai Schneider, Giulio Pellegrino, Alan A. Wray, Robert S. Rogallo
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions
American Institute of Physics, Physics of Fluids, 10(15), 2003.

Kai Schneider, Marie Farge
Coherent Vortex Simulation (CVS) of 2D bluff body flows using an adaptive wavelet method with penalisation

2002

Bartosz Protas, Kai Schneider, Marie Farge
Geometrical alignment properties in Fourier- and wavelet-filtered statistically stationary two-dimensional turbulence

Kai Schneider, Marie Farge
Adaptive Wavelet Simulation of a Flow around an Impulsively Started Cylinder Using Penalisation
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions

Abstract

The coherent vortex simulation (CVS) decomposes each realization of a turbulent flow into two orthogonal components: An organized coherent flow and a random incoherent flow. They both contribute to all scales in the inertial range, but exhibit different statistical behaviors. The CVS decomposition is based on the nonlinear filtering of the vorticity field, projected onto an orthonormal wavelet basis made of compactly supported functions, and the computation of the induced velocity field using Biot-Savart's relation. We apply it to a three-dimensional homogeneous isotropic turbulent flow with a Taylor microscale Reynolds number $R \lambda = 168$, computed by direct numerical simulation at resolution $N=256^3$. Only 2.9% of wavelet modes correspond to the coherent flow made of vortex tubes, which contribute 99% of energy and 79% of enstrophy, and exhibit the same $k^{-5/3}$ energy spectrum as the total flow. The remaining 97.1% of wavelet modes correspond to an incoherent random flow which is structureless, has an equipartition energy spectrum, and a Gaussian velocity probability distribution function (PDF). For the same flow and the same compression rate, the proper orthogonal decomposition (POD), which in this statistically homogeneous case degenerates into the Fourier basis, decomposes each flow realization into large scale and small scale flows, in a way similar to large eddy simulation (LES) filtering. It is shown that the large scale flow thus obtained does not extract the vortex tubes equally well as the coherent flow resulting from the CVS decomposition. Moreover, the small scale flow still contains coherent structures, and its velocity PDF is stretched exponential, while the incoherent flow is structureless, decorrelated, and its velocity PDF is Gaussian. Thus, modeling the effect of the incoherent flow discarded by CVS-wavelet shall be easier than modeling the effect of the small scale flow discarded by POD-Fourier or LES.
How to deposit an article in two clicks

Sign into ORCID or Register now

Personal Account Institutional Account

Sign in with your ORCID account

Email or iD *

marie.farge@ens.fr

ORCID Password

Forgotten password?

Deny Authorize
Depositing "Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions"

You can deposit the full text of your article. Dissemin will send it to a repository where it will be made freely available. By depositing your article on Zenodo via Dissemin, you agree to our terms of service.

Document

Select here the full text of your article. PDF files only, maximum size: 20.0 MB.

179.pdf
11 pages
221.49 KB
Change

Options

Upload type: published version (archiving allowed)
Repository: Zenodo
Metadata

Deposit
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions

Journal article by Marie Farge, Kai Schneider, Giulio Pellegrino, Alan A. Wray, Robert S. Rogallo

Abstract

The coherent vortex simulation (CVS) decomposes each realization of a turbulent flow into two orthogonal components: an organized coherent flow and a random incoherent flow. They both contribute to all scales in the inertial range, but exhibit different statistical behaviors. The CVS decomposition is based on the nonlinear filtering of the vorticity field, projected onto an orthonormal wavelet basis made of compactly supported functions, and the computation of the induced velocity field using Blot-Savart’s relation. We apply this to a three-dimensional homogeneous isotropic turbulent flow with a Taylor microscale Reynolds number $R_l = 168$ computed by direct numerical simulation at resolution $N=256^3$. Only 2.9% wavelet modes correspond to the coherent flow made of vortex tubes, which contribute 99% of energy and 79% of enstrophy, and exhibit the same $k^{-5/3}$ energy spectrum as the total flow. The remaining 97.1% wavelet modes correspond to an incoherent random flow which is structureless, has an equipartition energy spectrum, and a Gaussian velocity probability distribution function (PDF). For the same flow and the same compression rate, the proper orthogonal decomposition (POD), which in this statistically homogeneous case degenerates into the Fourier basis, decomposes each flow realization into large scale and small scale flows, in a way similar to large eddy simulation (LES) filtering. It is shown that the large scale flow thus obtained does not extract the vortex tubes equally well as the coherent flow resulting from the CVS decomposition. Moreover, the small scale flow still contains coherent structures, and its velocity PDF is stretched exponential, while the incoherent flow is structureless, decorrelated, and its velocity PDF is Gaussian. Thus, modeling the effect of the incoherent flow discarded by CVS-wavelet shall be easier than modeling the effect of the small scale flow discarded by POD-Fourier or LES.
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions

Marie Farge
LMD-IPL-CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

Kai Schneider
CMI, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
and L3M-CNRS, IMT, 38 rue Joliot-Curie, 13451 Marseille Cedex 20, France

Giulio Pellegrino
L3M-CNRS, IMT, 38 rue Joliot-Curie, 13451 Marseille Cedex 20, France

Alan A. Wray and Robert S. Rogallo
NASA-Ames Research Center, Moffett Field, California 94035

(Received 22 November 2002; accepted 21 May 2003; published 2 September 2003)

The coherent vortex simulation (CVS) decomposes each realization of a turbulent flow into two orthogonal components: An organized coherent flow and a random incoherent flow. They both contribute to all scales in the inertial range, but exhibit different statistical behaviors. The CVS decomposition is based on the nonlinear filtering of the vorticity field, projected onto an orthonormal wavelet basis made of compactly supported functions, and the computation of the induced velocity field using Biot–Savart’s relation. We apply it to a three-dimensional homogeneous isotropic turbulent flow with a Taylor microscale Reynolds number $R_e = 168$, computed by direct numerical simulation at resolution $N = 256^3$. Only 2.9%N wavelet modes correspond to the coherent flow made of vortex tubes, which contribute 99% of energy and 79% of enstrophy, and exhibit the same $k^{-5/3}$ energy spectrum as the total flow. The remaining 97.1%N wavelet modes correspond to an incoherent random flow which is structureless, has an equipartition energy spectrum, and a Gaussian velocity probability distribution function (PDF). For the same flow and the same compression rate, the proper orthogonal decomposition (POD), which in this statistically homogeneous case degenerates into the Fourier basis, decomposes each flow realization into large
How to download the source from GitHub
Contributors to dissemin

Contributions to master, excluding merge commits

Antonin
Ryan
How to create an open repository

Example of Ecole Normale Supérieure Paris

http://dissem.in/institution/1/
Département de géosciences

The administration has provided us with this list. Please report any problem to contact@dissem.in.

A

Ara Arakelian (2 papers)

B

Pierre Barré (49 papers)
Claude Basdevant (34 papers)
Pierre Briole (69 papers)

C

Éric Calais (125 papers)
Vincent Casse (2 papers)
Nicolas Chamot-Rooke (63 papers)
Christian Chopin (63 papers)
David Cugnet (13 papers)

D

Fabio D’Andrea (20 papers)
Damien Del diced (5 papers)
Matthias Delescluse (15 papers)
Pierpaolo Dubernet (1 paper)
Jean-Philippe Duvel (38 papers)

F

Marie Farge (106 papers)
Luce Fleitout (45 papers)
Jérôme Fortin (59 papers)

G

François Gay-Balmaz (51 papers)
Yves Gueguen (52 papers)
Lionel Guez (9 papers)

L

Guillaume Lapeyre (26 papers)
Soumaya Latour (5 papers)
Bernard Legras (53 papers)
Francois Lott (47 papers)

M

Patrick Meunier (20 papers)

P

Yves Pinquier (2 papers)
Jean-Pierre Pozzi (42 papers)
Manuel Pubellier (10 papers)

R

Alexis Rigo (27 papers)
Jean-Noel Rouzaud (93 papers)

S

Alexandre Schubnel (28 papers)
Laure-Anne Seve-Martinez (0 papers)
Adriana Sima (9 papers)
Sabrina Speich (58 papers)

T

Hector Tettelbaum (6 papers)

V

Bruce Velde (78 papers)
Christophe Vigny (40 papers)

Z

Claudia Zanetel (0 papers)
Vladimir Zeitlin (27 papers)

http://dissem.in/institution/1/
DOAI (Digital Open Access Identifier)

http://doai.io

DOAI uses the metadata gathered by Dissemin to redirect to a free version of the article.

For this replace dx.doi.org by doai.io in any DOI link:

Who runs this

DOAI is run by CAPSH, and relies on the metadata provided by our partners, BASE.
Gonosomal Algebra

Richard Varro

(Submitted on 22 Mar 2015)

We introduce the gonosomal algebra. Gonosomal algebra extend the evolution algebra of the bisexual population (EABP) defined by Ladra and Rozikov. We show that gonosomal algebras can represent algebraically a wide variety of sex determination systems observed in bisexual populations. We illustrate this by about twenty genetic examples, most of these examples cannot be represented by an EABP. We give seven algebraic constructions of gonosomal algebras, each is illustrated by genetic examples. We show that unlike the EABP gonosomal algebras are not dibaric. We approach the existence of dibaric function and idempotent in gonosomal algebras.

Subjects: Quantitative Methods (q-bio.QM); Rings and Algebras (math.RA)
MSC classes: 17D92
Cite as: arXiv:1503.08070 [q-bio.QM]
(or arXiv:1503.08070v1 [q-bio.QM] for this version)

Submission history
From: Richard Varro [view email]
[v1] Sun, 22 Mar 2015 11:29:29 GMT (34kb)
http://dissem.in
http://association.dissem.in
https://github.com/dissemin

Antonin Delpeuch <antonin@delpeuch.eu>
Marie Farge <marie.farge@ens.fr>
Team Dissemin <team@dissem.in>

@disseminOA
Investments for writing and peer-reviewing papers are public, but ownership of journals and profits from subscriptions and/or from Article Processing Charges are private.

Publishers should become service providers to publicly funded and publicly owned publishing platforms, without having the intellectual property of articles, journals, peer-reviewing exchanges, publishing platforms, data and metadata.
The diamond open access model

1

Authors keep their copyright and make their article available in open access using a Creative Commons license CC-BY.

2

The editorial board owns the journal (title and assets) while editors and referees peer-review articles for free, since it is part as their academic duty.

3

The publisher is no more the journal’s owner but becomes a service provider, that the editorial board selects and hires by contract.
Two diamond open access journals

IPOL Journal · Image Processing On Line

Founded in 2010 by Jean-Michel Morel, it has 41 editors. It is financed by CNES, ERC and 13 institutions from 5 countries. Each article contains the text, the algorithm and its source code, which all are peer-reviewed. The journal platform also provides online demonstration facility and an archive of experiments. IPOL is thus an Open Science and Reproducible Research journal.

Discrete Analysis

Founded in 2015 by Tim Gowers, it has 12 editors. It is an overlay journal on the open repository arXiv. It is financed by Cambridge University (10$/submission).
We need publishing platforms

1 Funding agencies should provide to the scientific community publicly-owned platforms, developed in open source software, for editing, publishing and archiving peer-reviewed articles, with the help of librarians, and publishers as contractors.

2 Funding agencies could thus control the quality of peer-reviewing, by selecting the journals having good practices and reputable editors.

3 Reading and publishing will be free to anyone. Publishing platforms will allow researchers to experiment new ways of publishing, e.g., open peer-reviewing.
Two publicly-owned publishing platforms

Brazil

- África do Sul
- Argentina
- Brasil
- Chile
- Colômbia
- Costa Rica
- Cuba
- Espanha
- México
- Peru
- Portugal
- Venezuela
- Bolívia
- Paraguai
- Uruguai

Created in 1999, it publishes 1249 journals in Open Access, financed by public agencies from Brazil (FAPESP, CNPq, BIREME) and from 15 countries.

Created in 1999, it publishes 431 journals in Open Access, financed by public agencies from France (CNRS, EHESS, BSN, Aix-Marseille and Avignon universities).
Green open access is a wise model

Today researchers are very dependent on ‘The Most Profitable Obsolete Technology in History’ where publishers own scientific journals and control bibliometry, they use as marketing tools to insure their control.

Vincent Larivière et al., The Oligopoly of Academic Publishers, PLOS one, 10th June 2015

The gold open access model leads to the creation of predatory journals of very poor quality, even fake journals. To avoid this and to guarantee a smooth transition to open access, researchers would like to preserve the main traditional journals which are useful, having a good reputation and good practices.

The wisest solution is the green open access model!

http://opencourse.ens.fr/MARIE_FARGE