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my goals for today
Discuss the role of open source software in astrophysics 
motivated by the study of time domain astronomical surveys. 

Demonstrate the impact of interdisciplinary collaboration, 
good documentation, and open development on this research.



time domain astronomy
Measure [something] as a function of time.



time domain astronomy
Measure [something] as a function of time.

where [something] =

position 
velocity 
brightness 
color 
...



exoplanets
One of the recent time domain success stories.
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so what?



kepler
was designed as a statistical mission.



data: NASA Exoplanet Archive
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state-of-the-art discovery 
requires 

pushing the technical boundaries



when you push the boundaries  
you won't have 

a good training set



the transit method
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precisely measure the brightness  
of many stars 
at high cadence 
for a long time

we need to



kepler
190k targets 
30 min cadence 
4 year baseline 
5,000 planet candidates



*note: all numbers are approximate





star



spacecraft star



detector

spacecraft star



detector

spacecraft star

planet?



+

planet star spacecraft detector observation

+ + =



auxiliary science
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Asteroseismology of Kepler Planet-Candidate Host Stars 3

! 10% in mass (Miglio 2012). For giants and evolved
subgiants (log g ! 3.8) similar results have been re-
ported, although a systematic deviation of ∼ 3% in ∆ν
has recently been noted for He-core burning red giants
(Miglio et al. 2012b).
In summary, for stars considered in this study, Equa-

tions (1) and (2) have been tested theoretically to ∼ 2%
and ∼ 5%, as well as empirically to ! 4% and ! 10% in
radius and mass, respectively. While it should be kept
in mind that future revisions of these relations based on
more precise empirical data are possible, it is clear that
these uncertainties are significantly smaller than for clas-
sical methods to determine radii and masses of field stars.

2.2. Asteroseismic Analysis

Our analysis is based on Kepler short-cadence
(Gilliland et al. 2010a) and long-cadence (Jenkins et al.
2010) data through Q11. We have used simple-aperture
photometry (SAP) data for our analysis. We have an-
alyzed all available data for the 1797 planet-candidate
hosts listed in the cumulative catalog by Batalha et al.
(2013). Before searching for oscillations, transits need to
be removed or corrected since the sharp structure in the
time domain would cause significant power leakage from
low frequencies into the oscillation frequency domain.
This was done using a median filter with a length chosen
according to the measured duration of the transit. In
an alternative approach, all transits were phase-clipped
from the time series using the periods and epochs listed
in Batalha et al. (2013). Note that for typical transit du-
rations and periods, the induced gaps in the time series
have little influence on the resulting power spectrum. Fi-
nally, all time series were high-pass filtered by applying a
quadratic Savitzky-Golay filter (Savitzky & Golay 1964)
to remove additional low-frequency power due to stellar
activity and instrumental variability. For short-cadence
data, the typical cut-off frequency was ∼ 100µHz, while
for long-cadence data a cut-off of ∼ 1µHz was applied.
To detect oscillations and extract the global oscilla-

tion parameters ∆ν and νmax, we have used the analysis
pipelines described by Huber et al. (2009), Hekker et al.
(2010), Karoff et al. (2010), Verner & Roxburgh (2011)
and Lund et al. (2012). Note that these methods have
been extensively tested on Kepler data and were shown
to agree well with other methods (Hekker et al. 2011b;
Verner et al. 2011a; Hekker et al. 2012). We successfully
detect oscillations in a total of 77 planet-candidate hosts
(including 11 stars for which asteroseismic solutions have
been published in separate studies). For 69 host stars
short-cadence data were used, while 8 of them showed
oscillations with νmax values low enough to allow a de-
tection using long-cadence data. The final values for ∆ν
and νmax are listed in Table 1 and were adopted from the
method of Huber et al. (2009), with uncertainties calcu-
lated by adding in quadrature the formal uncertainty
and the scatter of the values over all other methods.
Note that in some cases the S/N was too low to reli-
ably estimate νmax, and hence only ∆ν is listed. For one
host (KOI-1054) ∆ν could not be reliably determined,
and hence only νmax is listed. The solar reference val-
ues, which were calculated using the same method, are
∆ν⊙ = 135.1 ± 0.1µHz and νmax,⊙ = 3090 ± 30µHz
(Huber et al. 2011).
We note that in the highest S/N cases, the observa-

Fig. 1.— Power spectra for three Kepler planet-candidate host
stars with detected solar-like oscillations. The panels show three
representative hosts in different evolutionary stages: a main-
sequence star (top panel), a subgiant (middle panel) and a red giant
(bottom panel). For the latter long-cadence data were used, while
the former two have been calculated using short-cadence data. The
large frequency separation ∆ν is indicated in each panel. Note the
increase in the y-axis scale from the top to bottom panel, illustrat-
ing the increase in oscillation amplitudes for evolved stars.

tional uncertainties on ∆ν are comparable to or lower
than the accuracy to which Equation (1) has been tested
(see previous section). To account for systematic errors
in Equation (1), we adopt a conservative approach by
adding to our uncertainties in quadrature the difference
between the observed ∆ν and the corrected ∆ν using
Equation (5) in White et al. (2011). To account for the
fact that ∆ν can be measured more precisely than νmax,
the same fractional uncertainties were added in quadra-
ture to the formal νmax uncertainties. The final median
uncertainties in ∆ν and νmax are 2% and 4%, respec-
tively.
Figure 1 shows examples of power spectra for three

stars in the sample, illustrating a main-sequence star (top



it's not stopping anytime soon



tess
3.2M / 500k targets 
30 min / 2 min cadence 
30 day baseline 
15,000 planet candidates

*note: all numbers are predictions



what do we do with 
all these data?
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A rigorous inference method  

Efficient computation of the likelihood
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Markov chain Monte Carlo (MCMC)  

Gaussian processes (GPs)
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MCMC



in astronomy, we use MCMC

MCMC



MCMC is brittle
Either: algorithm requires tuning or model must be simplified.

MCMC



MCMC

emcee: The MCMC Hammer
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ABSTRACT. We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has
already been used in several published projects in the astrophysics literature. The algorithm behind emcee has
several advantages over traditional MCMC sampling methods and it has excellent performance as measured by
the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that
it requires hand-tuning of only 1 or 2 parameters compared to ∼N2 for a traditional algorithm in an N-dimensional
parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the
parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra
effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

Note: If you want to get started immediately with the emcee package, start at Appendix A or visit the online
documentation at http://dan.iel.fm/emcee. If you are sampling with emcee and having low-acceptance-rate or
other issues, there is some advice in § 4.

1. INTRODUCTION

Probabilistic data analysis—including Bayesian inference—
has transformed scientific research in the past decade. Many of
the most significant gains have come from numerical methods
for approximate inference, especially Markov chain Monte
Carlo (MCMC). For example, many problems in cosmology
and astrophysics6 have directly benefited from MCMC because
the models are often expensive to compute, there are many free
parameters, and the observations are usually low in signal-
to-noise.

Probabilistic data analysis procedures involve computing
and using either the posterior probability density function
(PDF) for the parameters of the model or the likelihood func-
tion. In some cases it is sufficient to find the maximum of one of
these, but it is often necessary to understand the posterior PDF
in detail. MCMC methods are designed to sample from—and
thereby provide sampling approximations to—the posterior
PDF efficiently even in parameter spaces with large numbers

of dimensions. This has proven useful in too many research
applications to list here but the results from the NASA
Wilkinson Microwave Anisotropy Probe (WMAP) cosmology
mission provide a dramatic example (for example, Dunkley et al.
2005).

Arguably the most important advantage of Bayesian data
analysis is that it is possible to marginalize over nuisance pa-
rameters. A nuisance parameter is one that is required in order to
model the process that generates the data, but is otherwise of
little interest. Marginalization is the process of integrating over
all possible values of the parameter and hence propagating the
effects of uncertainty about its value into the final result. Often
we wish to marginalize over all nuisance parameters in a model.
The exact result of marginalization is the marginalized proba-
bility function pðΘjDÞ of the set (list or vector) of model pa-
rameters Θ given the set of observations D

pðΘjDÞ ¼
Z

pðΘ;αjDÞdα; (1)

where α is the set (list or vector) of nuisance parameters. Be-
cause the nuisance parameter set α can be very large, this inte-
gral is often extremely daunting. However, a MCMC-generated
sampling of values ðΘt;αtÞ of the model and nuisance param-
eters from the joint distribution pðΘ;αjDÞ automatically pro-
vides a sampling of values Θt from the marginalized
PDF pðΘjDÞ.

In addition to the problem of marginalization, in many prob-
lems of interest the likelihood or the prior is the result of an
expensive simulation or computation. In this regime, MCMC
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Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.

4 Princeton University Observatory, Princeton, NJ 08544.
5 Courant Institute, New York University, 251 Mercer Street, New York, NY
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6The methods and discussion in this document have general applicability, but

we will mostly present examples from astrophysics and cosmology, the fields in
which we have most experience.
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MCMC

– 8 –

Algorithm 3 The parallel stretch move update step
1: for i ∈ {0, 1} do
2: for k = 1, . . . , K/2 do
3: // This loop can now be done in parallel for all k

4: Draw a walker Xj at random from the complementary ensemble S(∼i)(t)
5: Xk ← S(i)

k

6: z ← Z ∼ g(z), Equation (10)
7: Y ← Xj + z [Xk(t)−Xj]

8: q ← zn−1 p(Y )/p(Xk(t))
9: r ← R ∼ [0, 1]
10: if r ≤ q, Equation (9) then

11: Xk(t+
1
2)← Y

12: else

13: Xk(t+
1
2)← Xk(t)

14: end if
15: end for

16: t← t+ 1
2

17: end for

acceptance fraction af . This is the fraction of proposed steps that are accepted. There

appears to be no agreement on the optimal acceptance rate but it is clear that both extrema
are unacceptable. If af ∼ 0, then nearly all proposed steps are rejected, so the chain

will have very few independent samples and the sampling will not be representative of the
target density. Conversely, if af ∼ 1 then nearly all steps are accepted and the chain is

performing a random walk with no regard for the target density so this will also not produce
representative samples. As a rule of thumb, the acceptance fraction should be between 0.2
and 0.5 (for example, Gelman, Roberts, & Gilks 1996). For the M–H algorithm, these effects

can generally be counterbalanced by decreasing (or increasing, respectively) the eigenvalues
of the proposal distribution covariance. For the stretch move, the parameter a effectively

controls the step size so it can be used to similar effect. In our tests, it has never been
necessary to use a value of a other than 2, but we make no guarantee that this is the optimal
value.

Autocorrelation time The autocorrelation time is a direct measure of the number of
evaluations of the posterior PDF required to produce independent samples of the target

density. GW10 show that the stretch-move algorithm has a significantly shorter autocor-
relation time on several non-trivial densities. This means that fewer PDF computations

from: DFM, Hogg, Lang, Goodman (2013)



this project has been quite 
popular.
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why?
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limitations
emcee does not scale well with the number of dimensions.

MCMC
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what to do?
1. Compute derivatives by hand or using autodiff. 
2. Use an emulator or surrogate model.

MCMC
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Markov chain Monte Carlo (MCMC)  

Gaussian processes (GPs)
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Gaussian processes

GPs
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planet star spacecraft detector observation

+ + =

GPs
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planet star spacecraft detector observation

+ + =

physics

GPs



+

planet star spacecraft detector observation

+ + =

a Gaussian Process (incl. physics)physics

GPs
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GPs
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but...
There's a problem!

GPs
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kepler
190k targets 
70k obs./target

GPs



tess
500k targets 
20k obs./target
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my first try: hodlr
Hierarchical Off-Diagonal Low Rank approximations. 

In collaboration: Sivaram Ambikasaran (NYU→IIT)

GPs
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Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, Member, IEEE,

David W. Hogg, and Michael O’Neil, Member, IEEE

Abstract—A number of problems in probability and statistics
can be addressed using the multivariate normal (Gaussian) dis-
tribution. In the one-dimensional case, computing the probability
for a given mean and variance simply requires the evaluation of
the corresponding Gaussian density. In the n-dimensional setting,
however, it requires the inversion of an n⇥n covariance matrix,
C, as well as the evaluation of its determinant, det(C). In many
cases, such as regression using Gaussian processes, the covariance
matrix is of the form C = �2I + K, where K is computed
using a specified covariance kernel which depends on the data
and additional parameters (hyperparameters). The matrix C is
typically dense, causing standard direct methods for inversion
and determinant evaluation to require O(n3) work. This cost
is prohibitive for large-scale modeling. Here, we show that for
the most commonly used covariance functions, the matrix C
can be hierarchically factored into a product of block low-rank
updates of the identity matrix, yielding an O(n log2 n) algorithm
for inversion. More importantly, we show that this factorization
enables the evaluation of the determinant det(C), permitting the
direct calculation of probabilities in high dimensions under fairly
broad assumptions on the kernel defining K. Our fast algorithm
brings many problems in marginalization and the adaptation of
hyperparameters within practical reach using a single CPU core.
The combination of nearly optimal scaling in terms of problem
size with high-performance computing resources will permit the
modeling of previously intractable problems. We illustrate the
performance of the scheme on standard covariance kernels.

Index Terms—Gaussian process, covariance function, covari-
ance matrix, determinant, hierarchical off-diagonal low-rank,
direct solver, fast multipole method, Bayesian analysis, likelihood,
evidence

I. INTRODUCTION

ACommon task in probability and statistics is the compu-
tation of the numerical value of the posterior probability

of some parameters ✓ conditional on some data x, y 2 Rn

using a multivariate Gaussian distribution. This requires the
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evaluation of

p(✓|x, y) /
1

| det(C(x; ✓))|1/2
e
� 1

2y
tC�1(x;✓)y

p(✓), (1)

where C(x; ✓) is an n ⇥ n symmetric, positive-definite co-
variance matrix. The explicit dependence of C on particular
parameters ✓ is shown here, and may be dropped in the
proceeding discussion. In the one-dimensional case, C is
simply the scalar variance. Thus, computing the probability
requires only the evaluation of the corresponding Gaussian. In
the n-dimensional setting, however, C is typically dense, so
that its inversion requires O(n3) work as does the evaluation
of its determinant det(C). This cost is prohibitive for large n.

In many cases, the covariance matrix C is assumed to be
of the form C(x) = �

2
I + K(x), where Kij(x) = k(xi, xj).

This happens when the model for the data assumes some sort
of uncorrelated additive measurement noise having variance
�

2 in addition to some structured covariance described by
the kernel k. The function k(xi, xj) is called the covariance
function or covariance kernel, which, in turn, can depend on
additional parameters, ✓. Covariance matrices of this form uni-
versally appear in regression and classification problems when
using Gaussian process priors [49]. Because many covariance
kernels are similar to those that arise in computational physics,
a substantial body of work over the past decades has produced
a host of relevant fast algorithms, first for the rapid application
of matrices such as K [21], [24], [29], [31], [64], and more
recently on their inversion [4], [7], [10], [15], [21], [30], [39],
[43]. We do not seek to further review the literature here,
except to note that it is still a very active area of research.

Using the approach outlined in [4], we will show that under
suitable conditions, the matrix C can be hierarchically factored
into a product of block low-rank updates of the identity
matrix, yielding an O(n log2

n) algorithm for inversion. More
importantly (and perhaps somewhat surprising), we show that
our factorization enables the evaluation of the determinant,
det(C), in O(n log n) operations. Together, these permit the
efficient direct calculation of probabilities in high dimensions.
Previously existing methods for inversion and determinant
evaluation were based on either rough approximation meth-
ods or iterative methods [8], [13], [17], [54], [55]. These
schemes are particularly ill-suited for computing determinants.
Although bounds exist for sufficiently random and diagonally
dominant matrices, they are often inadequate in the general
case [11]. We briefly review existing accelerated methods for
Gaussian processes in Section II-D and present a cursory
heuristic comparison with our covariance matrix factorization.

Gaussian processes are the tool of choice for many statistical
inference or decision theory problems in machine learning
and the physical sciences. They are ideal when requirements
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but...
That's still not fast enough!
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my second try: célérité
Semi-separable matrices. 
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Abstract

The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are
computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used
for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their
application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one
dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the
method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples
of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet
parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of
complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance
arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a
physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective
model in some other cases. We present a mathematical description of the method and compare it to existing
scalable GP methods. The method is fast and interpretable, with a range of potential applications within
astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of
this method in C++, Python, and Julia.

Key words: asteroseismology – methods: data analysis – methods: statistical – planetary systems – stars: rotation

1. Introduction

In the astrophysical literature, Gaussian processes (GPs;
Rasmussen & Williams 2006) have been used to model
stochastic variability in light curves of stars (Brewer &
Stello 2009), active galactic nuclei (Kelly et al. 2014), and
the logarithmic flux of X-ray binaries (Uttley et al. 2005). They
have also been used as models for the cosmic microwave
background (Bond & Efstathiou 1987; Bond et al. 1999;
Wandelt & Hansen 2003), correlated instrumental noise
(Gibson et al. 2012), and spectroscopic calibration (Evans
et al. 2015; Czekala et al. 2017). While these models are widely
applicable, their use has been limited, in practice, by the
computational cost and scaling. The cost of computing a
general GP likelihood scales as the cube of the number of data
points '( )N3 , and in the current era of large time domain
surveys—with as many as ∼104–109 targets with ∼103–105

observations each—this scaling is prohibitive.
Existing astronomical time series data sets have already

reached the limit where naïve application of GP models is no
longer tractable. NASA’s Kepler mission (Borucki et al. 2010),
for example, measured light curves with more than 60,000
observations each for about 190,000 stars. Current and
forthcoming surveys such as K2 (Howell et al. 2014), TESS
(Ricker et al. 2014), LSST (Ivezić et al. 2008), WFIRST
(Spergel et al. 2015), and PLATO (Rauer et al. 2014) will
continue to produce similar or larger data volumes.

In this paper, we present a method for directly and exactly
computing a class of GP models that scales linearly with the
number of data points '( )N for one-dimensional data sets.
Unlike earlier linear methods using Kalman filters (e.g., Kelly
et al. 2014), this novel algorithm exploits the semiseparable
structure of a specific class of covariance matrices to directly
factorize and solve the system. This method can only be used
with one-dimensional data sets, and the covariance function
must be represented by a mixture of exponentials; we will
return to a discussion of what this means in detail in the
following sections. However, the measurements do not need to
be evenly spaced, and the uncertainties can be heteroscedastic.
This method achieves linear scaling by exploiting structure in

the covariance matrix when it is generated by a mixture of
exponentials. The semiseparable nature of these matrices was first
recognized by Ambikasaran (2015), building on intuition from a
20 yr old paper (Rybicki & Press 1995). As we will discuss in the
following pages, this choice of kernel function arises naturally in
physical systems, and we demonstrate that it can be used as an
effective model8 in other cases. This method is especially
appealing compared to other similar methods—we discuss these
comparisons in Section 7—because it is exact, simple, and fast.
Our main expertise lies in the field of exoplanet discovery and

characterization where GPs have become a model of choice. We
are confident that this method will benefit this field, but we also
expect that there will be applications in other branches of
astrophysics and beyond. In Section 6, we present applications of
the method to research problems in stellar rotation (Section 6.3),

The Astronomical Journal, 154:220 (21pp), 2017 December https://doi.org/10.3847/1538-3881/aa9332
© 2017. The American Astronomical Society. All rights reserved.
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that we use to make inferences even though it is known to be wrong.
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Stello 2009), active galactic nuclei (Kelly et al. 2014), and
the logarithmic flux of X-ray binaries (Uttley et al. 2005). They
have also been used as models for the cosmic microwave
background (Bond & Efstathiou 1987; Bond et al. 1999;
Wandelt & Hansen 2003), correlated instrumental noise
(Gibson et al. 2012), and spectroscopic calibration (Evans
et al. 2015; Czekala et al. 2017). While these models are widely
applicable, their use has been limited, in practice, by the
computational cost and scaling. The cost of computing a
general GP likelihood scales as the cube of the number of data
points '( )N3 , and in the current era of large time domain
surveys—with as many as ∼104–109 targets with ∼103–105

observations each—this scaling is prohibitive.
Existing astronomical time series data sets have already

reached the limit where naïve application of GP models is no
longer tractable. NASA’s Kepler mission (Borucki et al. 2010),
for example, measured light curves with more than 60,000
observations each for about 190,000 stars. Current and
forthcoming surveys such as K2 (Howell et al. 2014), TESS
(Ricker et al. 2014), LSST (Ivezić et al. 2008), WFIRST
(Spergel et al. 2015), and PLATO (Rauer et al. 2014) will
continue to produce similar or larger data volumes.

In this paper, we present a method for directly and exactly
computing a class of GP models that scales linearly with the
number of data points '( )N for one-dimensional data sets.
Unlike earlier linear methods using Kalman filters (e.g., Kelly
et al. 2014), this novel algorithm exploits the semiseparable
structure of a specific class of covariance matrices to directly
factorize and solve the system. This method can only be used
with one-dimensional data sets, and the covariance function
must be represented by a mixture of exponentials; we will
return to a discussion of what this means in detail in the
following sections. However, the measurements do not need to
be evenly spaced, and the uncertainties can be heteroscedastic.
This method achieves linear scaling by exploiting structure in

the covariance matrix when it is generated by a mixture of
exponentials. The semiseparable nature of these matrices was first
recognized by Ambikasaran (2015), building on intuition from a
20 yr old paper (Rybicki & Press 1995). As we will discuss in the
following pages, this choice of kernel function arises naturally in
physical systems, and we demonstrate that it can be used as an
effective model8 in other cases. This method is especially
appealing compared to other similar methods—we discuss these
comparisons in Section 7—because it is exact, simple, and fast.
Our main expertise lies in the field of exoplanet discovery and

characterization where GPs have become a model of choice. We
are confident that this method will benefit this field, but we also
expect that there will be applications in other branches of
astrophysics and beyond. In Section 6, we present applications of
the method to research problems in stellar rotation (Section 6.3),
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Scalable backpropagation for Gaussian Processes using celerite
Daniel Foreman-Mackey

1

1Flatiron Institute, New York, NY

INTRODUCTION
This research note presents a derivation and implementation of e�cient and scalable gradient computations using

the celerite algorithm for Gaussian Process (GP) modeling. The algorithms are derived in a “reverse accumulation” or
“backpropagation” framework and they can be easily integrated into automatic di�erentiation frameworks to provide a
scalable method for evaluating gradients of the GP likelihood. The algorithms derived in this note use less memory and
are more e�cient than versions using automatic di�erentiation and the cost scales linearly with the number of data
points.

GPs (Rasmussen & Williams 2006) are a class of models used extensively in the astrophysical literature to model
stochastic processes. The applications are broad-ranging with examples from time domain variability to the cosmic
microwave background (see the references in Foreman-Mackey et al. 2017). In these applications, the calculation and
optimization of the GP marginalized likelihood function

log L(◊, –) = ≠
1
2 [y ≠ µ◊]T K–

≠1 [y ≠ µ◊] ≠
1
2 log det K– + constant (1)

is the computational bottleneck. For a dataset with N data points, every likelihood evaluation requires the log-
determinant and inverse of the N ◊ N covariance matrix K–. The cost scales as O(N3) in general, but the celerite
method can be used to compute Equation (1) for a class of models with O(N) scaling (Foreman-Mackey et al. 2017).

The details can be found in Foreman-Mackey et al. (2017), and the only di�erence in notation is that all the matrices
in what follows are the “pre-conditioned” matrices, indicated with a tilde by Foreman-Mackey et al. (2017). The tilde is
not included here for simplicity. I use the symbol P for the (N ≠ 1) ◊ J pre-conditioning matrix that was called „ by
Foreman-Mackey et al. (2017). The factorization algorithm derived by Foreman-Mackey et al. (2017, their Equation 46)
is as follows:

function celerite factor(U, P, d, W )
# Initially d = a and W = V
S Ω zeros(J , J)
w1 Ω w1/d1
for n = 2, . . . , N :

S Ω diag(pn≠1) [S + dn≠1 wn≠1T wn≠1] diag(pn≠1)
dn Ω dn ≠ un S un

T

wn Ω [wn ≠ un S] /dn

return d, W , S

Here, zeros(P, Q) creates a P ◊Q matrix of zeros, diag creates a diagonal matrix from a vector, and xn is a row vector
made from the n-th row of the matrix X. The cost of this algorithm scales as O(N J2). Using this, the log-determinant
of K– is

log det K =
Nÿ

n=1
log dn . (2)

Similarly, the algorithm for applying the inverse of K is (Equations 47-48 in Foreman-Mackey et al. 2017):

reference: DFM (2018), arXiv:1801.10156
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limitations
célérité is restricted to semi-separable matrices and (in my 
implementation) this means 1D inputs with a stationary kernel.

GPs



summary
célérité provides a scalable method for evaluating GP likelihoods. 
This makes GP inference feasible for astronomical surveys. 

The class of kernel functions have a useful physical 
interpretation.

GPs



future directions
1. Combine with deep kernel learning to make the kernel more 

flexible. 
2. Extend to multiple dimensions for structured data (e.g. 

parallel time series).
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long period transiting planets
it all comes together…
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these are (mostly) single transits
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Figure 3. Sections of PDC light curve centered on each candidate (black) with the posterior-median
transit model over-plotted (orange). Candidates with two transits are folded on the posterior-median
period. The plots are ordered by increasing planetary radius from the top-left to the bottom-right.
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ABSTRACT

Currently, we have only limited means to probe the presence of planets at large orbital separations.
Foreman-Mackey et al. (2016, FM16) searched for long-period transiting planets in the Kepler light
curves using an automated pipeline. Here, we apply their pipeline, with minor modifications, to a
larger sample and use updated stellar parameters from Gaia DR2. The latter boosts the stellar radii
for most of the planet candidates found by FM16, invalidating a number of them as false positives.
We identify 15 candidates, including 2 new ones. All have sizes from 0.3 to 1 RJ, and all but two
have periods from 2 to 10 years. We report two main findings based on this sample. First, the planet
occurrence rate for the above size and period ranges is 0.70+0.40

�0.20 planets per Sun-like star, with the
frequency of cold Jupiters agreeing with that from radial-velocity surveys. Planet occurrence rises
with decreasing planet size, roughly describable as dN/d logR / R↵ with ↵ = �1.6+1.0

�0.9, or, Neptune-
sized planets are some four times more common than Jupiter-sized ones. Second, five out of our 15
candidates orbit stars with known transiting planets at shorter periods, including one with five inner
planets. We interpret this high incidence rate as: (1) almost all our candidates should be genuine;
(2) across a large orbital range (from ⇠ 0.05 AU to a few AUs), mutual inclinations in these systems
are at most a few degrees; and (3) large outer planets exist almost exclusively in systems with inner
small planets.
Keywords: methods: data analysis — methods: statistical — catalogs — planetary systems — planets

and satellites: general — stars: statistics — stars: individual (Kepler-154, Kepler-167,
Kepler-421, Kepler-459, Kepler-770, Kepler-989, KOI-99, KOI-1421)

1. INTRODUCTION

Currently, we have limited means to probe the planet
populations at orbital separations of order an AU or
above. These planets are di�cult to identify in tran-
sit surveys like the Kepler mission as they only transit
once or twice within the observational baseline. Further-
more, unless they have Jovian masses, their radial veloc-
ity signals are hard to detect. Though planet microlens-
ing studies have yielded an interesting sample, including
planets with Neptune masses, such a sample is small and
is mostly composed of planets orbiting M-dwarfs (Gould
et al. 2010). The elusive nature of these long-period
planets is a road-block on our path toward a complete
census of planet populations, and toward a successful
theory of planet formation. It has also recently become
apparent that long-period planets may be correlated with
short-period ones (Zhu & Wu 2018; Bryan et al. 2018),
and may influence the dynamical evolution of the latter.
Given this, it seems relevant and worthwhile to expand
our knowledge of such planets. In this work, we pursue
this task by searching for transiting long-period planets
in stellar light curves obtained by the Kepler mission.
The Kepler mission (Borucki et al. 2010) has been re-

sponsible for the discovery of thousands of transiting
exoplanets and planetary candidates (e.g., Thompson
et al. 2018). Relative to other transit surveys such as
the Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2014) or even the upcoming PLATOmission (Rauer
et al. 2014), Kepler’s long observational baseline makes
it uniquely capable of probing planets at a wide range
of orbital separations. However, as the transit probabil-

ity decreases rapidly with separation (⇠ 10�3 at 5 AU),
many recent exoplanet population studies have restricted
themselves to the distribution and occurrence rate of rel-
atively short-period planets (e.g., Fressin et al. 2013; Pe-
tigura et al. 2013; Dressing & Charbonneau 2015).
Long-period transit events are overlooked by standard

search procedures which require three or more transits
to be observed. Yee & Gaudi (2008) first introduced the
idea of searching for single-transit events in the Kepler

data, and a handful of studies have since sought to in-
crease the sample of known long-period planets through
visual inspection of individual light curves (e.g., Wang
et al. 2015; Uehara et al. 2016). However this method
has its own shortcomings; it is di�cult to determine the
detection e�ciency of such a search procedure, which is
critical for studying the underlying planet population.
Foreman-Mackey et al. (2016, hereafter FM16) was

the first to perform an automated search for long-
period transiting planets. FM16 sought long-period, high
signal-to-noise (S/N) transit signals in the light curves of
39,036 bright main sequence GK stars. They identified
16 long-period planet candidates (two of which they label
as likely false positives). By injecting artificial transits
into the light curves, they obtained the search complete-
ness and detection e�ciency for their pipeline, allowing
them to infer the occurrence rate of planets in the outer
region. FM16 reported a rate of 0.42 ± 0.16 planets per
star within a radius range of 0.4 RJ < Rp < 1 RJ and
a period range of 2 yr < P < 25 yr. Their work con-
stitutes significant progress towards understanding the
population of outer planets.
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tess
3.2M / 500k targets 
30 min / 2 min cadence 
30 day baseline 
15,000 planet candidates

*note: all numbers are predictions



take homes & themes
Modern astrophysics requires the development (and 
implementation) of new algorithms.



take homes & themes
Modern astrophysics requires the development (and 
implementation) of new algorithms. 

This really benefits from interdisciplinary collaboration, 
good documentation, and open development.



take homes & themes
Every project described here is open source software 
with an associated journal article.



take homes & themes
Every project described here is open source software 
with an associated journal article. 

Is this a hack?



references
dfm/emcee 

dfm/exoplanet 
dfm/george 

dfm/celerite 
dfm/peerless

gradient-free MCMC in Python 
gradient-based inference for time series 
simple Gaussian processes in Python 
fast & scalable Gaussian processes 
long period transiting exoplanets

dan foreman-mackey 
cca@flatiron  dfm.io  github.com/dfm  @exoplaneteer





fast/accurate light curve models

STARRY

work led by Rodrigo Luger (Flatiron)
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a Gaussian Process (incl. physics)physics
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The real spherical harmonics
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Luger+ (2018)
Kreidberg (2015)
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github.com/rodluger/starry

rodluger.github.io/starry

arxiv.org/abs/1810.06559
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