Strings at the LHC

Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München
Suppose you are interested in string theory
Suppose you are interested in string theory

... you should be also interested in the question
Suppose you are interested in string theory

... you should be also interested in the question

What is string theory good for?
Suppose you are interested in string theory

... you should be also interested in the question

Where is the string scale M_s ?
Suppose you are interested in string theory

... you should be also interested in the question

Where is the string scale M_s ?

(i) Condensed matter systems are strings: AdS/CM

(S. Gubser; S. Hartnoll, C. Herzog, G. Horowitz, 2008)

\[M_s \simeq 1 \text{ eV} \]
Suppose you are interested in string theory ...
... you should be also interested in the question

Where is the string scale M_s?

(i) Condensed matter systems are strings: AdS/CM
 (S. Gubser; S. Hartnoll, C. Herzog, G. Horowitz, 2008)
 \[M_s \sim 1 \text{ eV} \]

(ii) Hadrons are strings: AdS/CFT
 (G. Veneziano, 1968; G. t Hooft, 1974; J. Maldacena 1997)
 \[M_s \sim 1 \text{ GeV} \]
Suppose you are interested in string theory

... you should be also interested in the question

Where is the string scale M_s?

(i) Condensed matter systems are strings: AdS/CM
 (S. Gubser; S. Hartnoll, C. Herzog, G. Horowitz, 2008)

 $M_s \approx 1 \text{ eV}$

(ii) Hadrons are strings: AdS/CFT
 (G. Veneziano, 1968; G. t Hooft, 1974; J. Maldacena 1997)

 $M_s \approx 1 \text{ GeV}$

(iii) Elementary particles are strings: Quantum gravity

D. Lüst, Strings at the LHC, KITP, 14th April 2010
Suppose you are interested in string theory

... you should be also interested in the question

Where is the string scale M_s ?

(i) Condensed matter systems are strings: AdS/CM
(S. Gubser; S. Hartnoll, C. Herzog, G. Horowitz, 2008)

$$M_s \simeq 1 \text{ eV}$$

(ii) Hadrons are strings: AdS/CFT
(G. Veneziano, 1968; G. t Hooft, 1974; J. Maldacena 1997)

$$M_s \simeq 1 \text{ GeV}$$

(iii) Elementary particles are strings: Quantum gravity
(J. Scherk, J. Schwarz, 1974)

$$M_s \simeq M_{\text{Planck}} \simeq 10^{19} \text{ GeV}$$

D. Lüst, Strings at the LHC, KITP, 14th April 2010
Suppose you are interested in string theory

... you should be also interested in the question

Where is the string scale M_s ?

(i) Condensed matter systems are strings: AdS/CM
 (S. Gubser; S. Hartnoll, C. Herzog, G. Horowitz, 2008)

 \[M_s \simeq 1 \text{ eV} \]

(ii) Hadrons are strings: AdS/CFT
 (G. Veneziano, 1968; G. 't Hooft, 1974; J. Maldacena 1997)

 \[M_s \simeq 1 \text{ GeV} \]

(iii) Elementary particles are strings: Quantum gravity
 Actually this is not even necessary, but rather

 \[M_s \simeq 1 \text{ TeV} - 10^{19} \text{ GeV} \]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
The solution of the Hierarchy Problem hints at new physics in the TeV region (visible at the LHC?).

\[M_{SM} \ll M_{\text{Planck}} \]
The solution of the Hierarchy Problem hints at new physics in the TeV region (visible at the LHC?).

\[M_{\text{SM}} \ll M_{\text{Planck}} \]

Low energy supersymmetry:

\[M_s \approx \sqrt{M_{\text{SUSY}} M_{\text{Planck}}} \approx 10^{11} \text{ GeV} \]
The solution of the Hierarchy Problem hints at new physics in the TeV region (visible at the LHC?).

\[M_{SM} \ll M_{Planck} \]

Low energy supersymmetry:

\[M_s \approx \sqrt{M_{SUSY} M_{Planck}} \approx 10^{11} \text{ GeV} \]

Low scale for quantum gravity:

\[M_s \approx 1 \text{ TeV} \]
The solution of the Hierarchy Problem hints at new physics in the TeV region (visible at the LHC?).

\[M_{\text{SM}} \ll M_{\text{Planck}} \]

Low energy supersymmetry:

\[M_s \approx \sqrt{M_{\text{SUSY}} M_{\text{Planck}}} \approx 10^{11} \text{ GeV} \]

Low scale for quantum gravity:

\[M_s \approx 1 \text{ TeV} \]

Both scenarios are possible in string compactifications!
The solution of the Hierarchy Problem hints at new physics in the TeV region (visible at the LHC?).

\[M_{\text{SM}} \ll M_{\text{Planck}} \]

Low energy supersymmetry:

\[M_s \approx \sqrt{M_{\text{SUSY}} M_{\text{Planck}}} \approx 10^{11} \text{ GeV} \]

Low scale for quantum gravity:

\[M_s \approx 1 \text{ TeV} \]

Both scenarios are possible in string compactifications!
Low string scale compactifications

Suppose that the fundamental scale of gravity, i.e. the string scale is around 1 TeV:

\[M_{\text{Grav.}} = M_s \simeq 1 \text{ TeV} \]

\[M_{n}^2 = M_s^2 \left(\sum_{k=1}^{n} \alpha_{-k}^{\mu} \alpha_{k}^{\nu} - 1 \right) = (n - 1) M_s^2, \quad (n = 1, \ldots, \infty) \]
Then the following double string picture arises:

(i) Hadron spectrum at 1 GeV: String like objects (described by AdS/CFT)

(ii) Elementary (open) strings:

- Zero modes: quarks, gluons, etc
- Excited quarks, gluons etc at 1 TeV

\[g^* \text{ spin } 0, 1, 2 \quad \& \quad q^* \text{ spin } 1/2, 3/2 \]

⇒ Two different kinds of Regge trajectories!
How does string theory meet collider physics?

Collision of quarks and gluons:
How does string theory meet collider physics?

Collision of quarks and gluons:

- QCD is valid at low energies
How does string theory meet collider physics?

Collision of quarks and gluons:

- QCD is valid at low energies
- Corrections at higher energies from strings due to new colored objects:
How does string theory meet collider physics?

Collision of quarks and gluons:

- QCD is valid at low energies
- Corrections at higher energies from strings due to new colored objects:
 - New stringy physics at the collider in case $M_s = \mathcal{O}(\text{TeV})$
 - Discovery of universal heavy string excitations!
Outline

- Mass scales in D-brane compactifications

- Test of D-brane models at the LHC
 (The LHC string hunter’s companion)

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333;
II) Mass scales in D-brane compactifications:
Recall basic set-up of type IIA/B orientifolds:
II) Mass scales in D-brane compactifications:

Recall basic set-up of type IIA/B orientifolds:

- Compactification on a 6-dimensional space M_6

$$M_{10} = R^{3,1} \otimes M_6$$

- Wrapped (3+p)-dimensional D-branes
II) Mass scales in D-brane compactifications:

Recall basic set-up of type IIA/B orientifolds:
II) Mass scales in D-brane compactifications:

Recall basic set-up of type IIA/B orientifolds:

- Gravitons live as closed strings in 10-dimensional bulk.
II) Mass scales in D-brane compactifications:

Recall basic set-up of type IIA/B orientifolds:

- Gravitons live as closed strings in 10-dimensional bulk.
- Non-Abelian gauge bosons live as open strings on lower dimensional D-branes.
Recall basic set-up of type IIA/B orientifolds:

- Gravitons live as closed strings in 10-dimensional bulk.
- Non-Abelian gauge bosons live as open strings on lower dimensional D-branes.
- Chiral fermions are open strings on the intersection locus of two D-branes.
II) Mass scales in D-brane compactifications:
Recall basic set-up of type IIA/B orientifolds:

- Gravitons live as closed strings in 10-dimensional bulk.
- Non-Abelian gauge bosons live as open strings on lower dimensional D-branes.
- Chiral fermions are open strings on the intersection locus of two D-branes:

Large landscape of consistent D-brane compactifications!

Can we make any model independent predictions?
II) Mass scales in D-brane compactifications:

Recall basic set-up of type IIA/B orientifolds:

- Gravitons live as closed strings in 10-dimensional bulk.
- Non-Abelian gauge bosons live as open strings on lower dimensional D-branes.
- Chiral fermions are open strings on the intersection locus of two D-branes:

Large landscape of consistent D-brane compactifications!

Can we make any model independent predictions?
3 basic assumptions:
3 basic assumptions:

(i) Consider D-brane compact which realize the SM, i.e. contain the SM D-brane quiver:
3 basic assumptions:

(i) Consider D-brane compact, i.e. contain the SM D-brane
3 basic assumptions:

(i) Consider D-brane compactifications which realize the SM
 i.e. contain the SM D-brane quiver:

 (a) baryonic U(2)
 (d) leptonic U(1)_L

(ii) Consider D-brane compactifications which allow for low string scale (solve hierarchy problem without SUSY)

⇒ Low scale for quantum gravity & large extra dimensions.
3 basic assumptions:

(i) Consider D-brane compactifications which realize the SM, i.e. contain the SM D-brane quiver:

(b) left \(W^\pm \)

(c) right \(g, \pi, \overline{d} \)

(a) baryonic \(U(2) \)

(d) leptonic \(U(1)_R \)

(ii) Consider D-brane compactifications which allow for low string scale (solve hierarchy problem without SUSY):

\(\Rightarrow \) Low scale for quantum gravity & large extra dimensions.

(iii) Perturbation theory is valid, i.e. small string coupling.
3 basic assumptions:

(i) Consider D-brane compactifications which allow for low string scale (solve hierarchy problem without SUSY)

(ii) Consider D-brane compactifications which allow for low string scale (solve hierarchy problem without SUSY)

(iii) Perturbation theory is valid, i.e. small string coupling.

(iv) Longitudinal space along D-branes is un-warped.

⇒ Low scale for quantum gravity & large extra dimensions.

(Discussion of warped case: Perelstein, Spray, arXiv:0907.3496)
3 basic assumptions:

(i) Consider D-brane compact. i.e. contain the SM:

(ii) Consider D-brane compactifications which allow for low string scale (solve hierarchy problem without SUSY):

⇒ Low scale for quantum gravity & large extra dimensions.

(iii) Perturbation theory is valid, i.e. small string coupling.

(iv) Longitudinal space along D-branes is un-warped.

(Discussion of warped case: Perelstein, Spray, arXiv:0907.3496)

⇒ Universal predictions that are true for all points in the landscape, i.e. independent from any details of the compact space!

D. Lüst, Strings at the LHC, KITP, 14th April 2010
There are 3 basic mass scales in D-brane compactifications:
There are 3 basic mass scales in D-brane compactifications:

String scale:

\[
(1) : \quad M_s = \frac{1}{\sqrt{\alpha'}}
\]
There are 3 basic mass scales in D-brane compactifications:

String scale: \[M_s = \frac{1}{\sqrt{\alpha'}} \]

Compatification scale: \[M_6 = \frac{1}{V_6^{1/6}} \]
There are 3 basic mass scales in D-brane compactifications:

String scale:

\[M_s = \frac{1}{\sqrt{\alpha'}} \]

Compatification scale:

\[M_6 = \frac{1}{V_6^{1/6}} \]

Scale of wrapped D(p+3)-branes (e.g. II\(B\): \(p=0,4\)), (II\(A\): \(p=3\)):

\[M_p^\parallel = \frac{1}{(V_p^\parallel)^{1/p}} \] \quad (3)

\[M_6^{p-6} = \frac{1}{(V_6^{p-6})^{1/(6-p)}} \] \quad (3')

\[V_6 = V_p^\parallel V_6^{p-6} \]
There are 2 basic 4D observables:
There are 2 basic 4D observables:

Strength of 4D gravitational interactions:

\[
(A) : \quad M_{\text{Planck}}^2 \sim M_s^8 V_6 \sim 10^{19} \text{ GeV}
\]
There are 2 basic 4D observables:

Strength of 4D gravitational interactions:

\[(A)\] : \(M_{\text{Planck}}^2 \simeq M_s^8 V_6 \simeq 10^{19} \text{ GeV}\)

Strength of 4D gauge interactions:

\[(B)\] : \(g_{Dp}^{-2} \simeq M_s^p V_p^\parallel \simeq \mathcal{O}(1)\)

\[\implies (V_p^\parallel)^{-1/p} \simeq M_s\]
There are 2 basic 4D observables:

Strength of 4D gravitational interactions:

\[(A) : \quad M_{\text{Planck}}^2 \simeq M_s^8 V_6 \simeq 10^{19} \text{ GeV}\]

Strength of 4D gauge interactions:

\[(B) : \quad g_D^{-2} \simeq M_s^p V^\parallel_p \simeq O(1)\]

\[\implies (V^\parallel_p)^{-1/p} \simeq M_s\]

(A) and (B): leave one free parameter.

\(M_s\) is a free parameter in D-brane compactifications!
There are 4 natural scenarios for the string scale:

(o) Planck scale scenario:

\[M_s \] is the gravitational 4D Planck scale

\[M_s \equiv M_{\text{Planck}} \sim 10^{19} \text{ GeV} \]
(i) GUT scale scenario:

\[M_s \equiv M_{GUT} \simeq 10^{16} \text{ GeV} \]

\(M_s \) is the 4D scale of gauge coupling unification.
(i) GUT scale scenario:

\[M_s \equiv M_{GUT} \simeq 10^{16} \text{ GeV} \]

Recent GUT string model building in F-theory and IIB orientifolds:

- D7-branes wrapped on del Pezzo surfaces
- GUT gauge group is broken by \(U(1)_Y \) flux

(Beasley, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt; Blumenhagen, Braun, Grimm, Weigand)
(ii) SUSY breaking scenario:

\(M_s \) is the intermediate 4D scale of supersymmetry breaking

\[
M_s \equiv M_{SUSY} \simeq 10^{11} \text{ GeV}
\]

Gravity mediation:

\[
M_{SUSY} \sim \sqrt{M_{SM} M_{\text{Planck}}}
\]

(e.g. Domain wall SUSY breaking by fluxes)

(iii) Low string scale scenario:

\[M_s \] is the Standard Model (TeV) scale:

\[M_s \equiv M_{SM} \simeq 10^3 \text{ GeV} \]

(Effective scale of gravity is high (i.e. gravity is weak), since the gravitons can propagate into the large 6-dim. bulk space!)
(iii) Low string scale scenario:

\[M_s \] is the Standard Model (TeV) scale:

\[M_s \equiv M_{SM} \simeq 10^3 \text{ GeV} \]

(Effective scale of gravity is high (i.e. gravity is weak), since the gravitons can propagate into the large 6-dim. bulk space!)

Dimensionless volumes in string units, corresponding to the four scenarios:

\[V_6' = V_6 M_s^6 = \frac{M_{\text{Planck}}^2}{M_s^2} = 1, 10^6, 10^{16}, 10^{32} \]
There are 4 generic types of particles:
There are 4 generic types of particles:

(i) Stringy Regge excitations:

\[M_{\text{Regge}} = \sqrt{n} M_s = \sqrt{\frac{n}{V_6'}} M_{\text{Planck}}, \quad (n = 1, \ldots, \infty) \]

Open string excitations: completely universal (model independent), carry SM gauge quantum numbers: higher spin excitations of \(g, W, Z, \gamma, q, l \)
(ii) D-brane cycle Kaluza Klein excitations:

\[M_{KK}^\parallel = \frac{m}{(V_p^\parallel)^{1/p}} \simeq m M_s = m \frac{M_{\text{Planck}}}{(V_6')^{1/2}} \quad (m = 1, \ldots, \infty) \]

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers

Internal momenta excitations of \(g, W, Z, \gamma, q, l \)
(ii) D-brane cycle Kaluza Klein excitations:

\[M_{KK}^\parallel = \frac{m}{(V_p^\parallel)^{1/p}} \simeq m M_s = m \frac{M_{\text{Planck}}}{(V_6')^{1/2}} \quad (m = 1, \ldots, \infty) \]

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers

Internal momenta excitations of \(g, W, Z, \gamma, q, l \)

The string Regge excitations and the D-brane cycle KK modes are charged under the SM and have mass of order \(M_s \) ➔ can they be seen at LHC ?!
(iii) Overall volume modulus:

\[M_T = \frac{M_{\text{Planck}}}{(V_6')^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV} \]

Closed string, model independent, neutral under the SM, interacts only gravitationally

Problem: the very light mass causes a fifth force.

Would rule out TeV string scale!
(iii) Overall volume modulus:

\[M_T = \frac{M_{\text{Planck}}}{(V'_6)^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV} \]

Closed string, model independent, neutral under the SM, interacts only gravitationally

Problem: the very light mass causes a fifth force.

Would rule out TeV string scale!
(iii) Overall volume modulus:

\[M_T = \frac{M_{\text{Planck}}}{(V'_6)^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV} \]

Closed string, model independent, neutral under the SM, interacts only gravitationally

Problem: the very light mass causes a fifth force.

Would rule out TeV string scale!

But one expects a mass shift by radiative corrections:

\[\Delta M_T \sim \frac{\langle T_{\mu}^{\mu} T_{\mu}^{\mu} \rangle}{M_{\text{Planck}}^2} \sim \frac{M_s^4}{M_{\text{Planck}}^2} \sim 10^{-13} \text{ GeV} \]

(G. Dvali, D. Lüst, arXiv:0912.3167)
(iv) Mini black holes (string balls):

These are non-perturbative states, associated to the higher dimensional gravity scale:

\[M_{b.h.} = \frac{M_s}{g_s^2} \gg M_s \quad \text{if} \quad g_s < 1 \]

Weakly coupled string theory: gravity effects occur much above \(M_s \)!

Regge excitations: \(M_{\text{Regge}} \sim M_s \sqrt{n} \)

If \(g_s = 0.1 \) \(\Rightarrow \)

\[n = \frac{1}{g_s^4} \sim 10^4 \quad \text{string states before one reaches black hole!} \]
Low string scale models:

⇒ General framework: Large species models:

\[M_{\text{Planck}}^2 = N M_{\text{Grav}}^2 \quad (N: \# \text{ of species}) \]

E.g: \(N = 10^{32} \implies M_{\text{Grav}} = 10^{-16} M_{\text{Planck}} \simeq 1 \text{ TeV} \)

This relation arises from natural bounds on black hole decays.

\(M_{\text{Grav}} \) can be seen as the fundamental scale of gravity, which is diluted by the presence on the \(N \) particle species.
Is there a stringy realization of the large N species scenario?

Low string scale models:

⇒ General framework: Large species models:

\[M_{\text{Planck}}^2 = N M_{\text{Grav}}^2 \quad (\text{N: \# of species}) \]

E.g: \[N = 10^{32} \implies M_{\text{Grav}} = 10^{-16} M_{\text{Planck}} \approx 1 \text{ TeV} \]

This relation arises from natural bounds on black hole decays.

\(M_{\text{Grav}} \) can be seen as the fundamental scale of gravity, which is diluted by the presence on the N particle species.

D. Lüst, Strings at the LHC, KITP, 14th April 2010
(i) Large volume compactifications

(Antoniadis, Arkani-Hamed, Dimopoulos, Dvali (1998))

\[N = V'_6 = \# \text{ of KK states} = 10^{32} \]

Stringy realization by Swiss cheese Calabi-Yau’s:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz;
Blumenhagen, Moster, Plauschinn;
for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

2 requirements:

- Negative Euler number.
- SM lives on D7-branes around small cycles of the CY. One needs at least one blow-up mode (resolves point like singularity).
There even exist an alternative to large volume compactifications:

Super weakly coupled strings:
There even exist an alternative to large volume compactifications:

Super weakly coupled strings:

(ii) String scale compactification: \(V'_{6} = 1 \)

(G. Dvali, D. Lüst, arXiv:0912.3167)

\(N \) is the effective number of string states that contribute to the black hole bound:

\[
N = \frac{1}{g_s^2} = 10^{32}
\]
There even exist an alternative to large volume compactifications:

Super weakly coupled strings:

(ii) String scale compactification: \(V'_{6} = 1 \)

\[N = \frac{1}{g_s^2} = 10^{32} \]

(i) and (ii) are in agreement with the known relation:

\[M_{\text{Planck}}^2 = \frac{1}{g_s^2} V'_6 M_s^2 \]
III) Test of D-brane models at the LHC:

\[gg, \ qq, \ qg \rightarrow X \rightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:
In string perturbation theory production of:

- Regge excitations of higher spin:

First resonances: g^* spin 0,1,2 & q^* spin 1/2, 3/2
III) Test of D-brane models at the LHC:

\[
\begin{align*}
gg, qq, qg & \rightarrow X \rightarrow g, \gamma, Z, W, q, l
\end{align*}
\]

In string perturbation theory production of:

- Regge excitations of higher spin:

 First resonances: \(g^* \) spin 0,1,2 & \(q^* \) spin 1/2, 3/2

- Kaluza Klein (KK) (and winding) modes
III) Test of D-brane models at the LHC:

\[gg, qq, qg \longrightarrow X \longrightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:

- Regge excitations of higher spin:

 First resonances: \(g^* \) spin 0,1,2 & \(q^* \) spin 1/2, 3/2

- Kaluza Klein (KK) (and winding) modes

One has to compute the parton model cross sections of SM fields into new stringy states!
The string scattering amplitudes exhibit some interesting (mathematical) properties:

• They go beyond the N=4 Yang-Mills amplitudes:

 (i) The contain quarks & leptons in fundamental repr.

 Quark, lepton vertex operators:

 $V_{q,l}(z, u, k) = u^\alpha S_\alpha(z) \Xi_{a \cap b}(z) e^{-\phi(z)/2} e^{ik \cdot X(z)}$

 Fermions: boundary changing (twist) operators!

 Striking relations between quark and gluon amplitudes!

 (ii) They contain stringy corrections:
• n-point tree amplitudes with 0 or 2 open string fermions (quarks, leptons) and n or n-2 gauge bosons (gluons) are completely model independent.

⇒ Information about the string Regge spectrum.

• KK modes are seen in scattering processes with more than 2 fermions.

⇒ Information about the internal geometry.
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[(1) \quad n=4: \quad \mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{\text{disk}}\]
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[
(1) \quad n=4: \quad A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) \, V_{\Phi^2}(z_2) \, V_{\Phi^3}(z_3) \, V_{\Phi^4}(z_4) \rangle_{\text{disk}}
\]

These amplitudes depend on only one characteristic function and are dominated by the following poles:
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[
(1) \quad n=4: \quad A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) \ V_{\Phi^2}(z_2) \ V_{\Phi^3}(z_3) \ V_{\Phi^4}(z_4) \rangle_{disk}
\]

These amplitudes depend on only one characteristic function and are dominated by the following poles:
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\(\text{(I)} \ n=4: \ A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{\text{disk}}\)

These amplitudes depend on only one characteristic function and are dominated by the following poles:
Disk amplitudes among external SM fields $(q, l, g, \gamma, Z^0, W^\pm)$:

(1) $n=4$: $A(\Phi_1, \Phi_2, \Phi_3, \Phi_4) = \langle V_{\Phi_1}(z_1) V_{\Phi_2}(z_2) V_{\Phi_3}(z_3) V_{\Phi_4}(z_4) \rangle_{\text{disk}}$

These amplitudes depend on only one characteristic function and are dominated by the following poles:

- Exchange of SM fields
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[(1) \quad n=4: \quad A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) \, V_{\Phi^2}(z_2) \, V_{\Phi^3}(z_3) \, V_{\Phi^4}(z_4) \rangle_{\text{disk}} \]

These amplitudes depend on only one characteristic function and are dominated by the following poles:

- **Exchange of SM fields**
- **Exchange of string Regge resonances (Veneziano like ampl.)**

\(\Rightarrow \) new contact interactions:

\[
A(k_1, k_2, k_3, k_4; \alpha') \sim -\frac{\Gamma(-\alpha's) \, \Gamma(1-\alpha'u)}{\Gamma(-\alpha's - \alpha'u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s - M_n^2} \sim \frac{t}{s} - \frac{\pi^2}{6} \, tu \, (\alpha')^2 + \ldots
\]

\[
V_s(\alpha') = \frac{\Gamma(1-s/M_{\text{string}}^2) \, \Gamma(1-u/M_{\text{string}}^2)}{\Gamma(1-t/M_{\text{string}}^2)} = 1 - \frac{\pi^2}{6} M_{\text{string}}^{-4} \, su - \zeta(3) M_{\text{string}}^{-6} \, stu + \ldots \rightarrow 1 |_{\alpha' \rightarrow 0}
\]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
Disk amplitudes among external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[(1) \quad n=4: \quad A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{\text{disk}}\]

These amplitudes depend on only one characteristic function and are dominated by the following poles:

- Exchange of SM fields
- Exchange of string Regge resonances (Veneziano like ampl.)

\(\Rightarrow\) new contact interactions:

\[
A(k_1, k_2, k_3, k_4; \alpha') \sim -\frac{\Gamma(-\alpha's) \Gamma(1-\alpha'u)}{\Gamma(-\alpha's - \alpha'u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s-M_n^2} \sim \frac{t}{s} - \frac{\pi^2}{6} tu (\alpha')^2 + \ldots
\]

\[
V_s(\alpha') = \frac{\Gamma(1 - s/M_{\text{string}}^2)\Gamma(1 - u/M_{\text{string}}^2)}{\Gamma(1 - t/M_{\text{string}}^2)} = 1 - \frac{\pi^2}{6} M_{\text{string}}^{-4} su - \zeta(3) M_{\text{string}}^{-6} stu + \ldots \rightarrow 1 |_{\alpha'\rightarrow 0}
\]

- Exchange of KK and winding modes (model dependent)

D. Lüst, Strings at the LHC, KITP, 14th April 2010
4 gauge boson amplitudes:

Disk amplitude:
4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒
These amplitudes are completely model independent!
4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒
These amplitudes are completely model independent!

Examples:
4 gauge boson amplitudes:

Disk amplitude:

Only string Regge resonances are exchanged ⇒

These amplitudes are completely model independent!

Examples:

\[|\mathcal{M}(gg \to gg)|^2 = g_3^4 \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2} \right) \left[\frac{9}{4} s^2 V_s^2(\alpha') - \frac{1}{3} (s V_s(\alpha'))^2 + (s \leftrightarrow t) + (s \leftrightarrow u) \right] \]

⇒ dijet events

\[|\mathcal{M}(gg \to g\gamma(Z^0))|^2 = g_3^4 \frac{5}{6} Q_A^2 \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2} \right) (s V_s(\alpha') + t V_t(\alpha') + u V_u(\alpha'))^2 \]

Observable at LHC for \(M_{\text{string}} = 3 \text{ TeV} \)

D. Lüst, Strings at the LHC, KITP, 14th April 2010

(Stieberger, Taylor)

(Anchordoqui, Goldberg, Nawata, Taylor, arXiv:0712.0386)
4 gauge boson amplitudes:

Only string Regge resonances are exchanged ⇒
These amplitudes are completely model independent!

Examples:

\[
\alpha' \rightarrow 0 : \text{agreement with SM!}
\]

\[
|\mathcal{M}(gg \rightarrow gg)|^{2}_{\alpha' \rightarrow 0} \rightarrow \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2} \right) \frac{9}{4} \left(s^2 + t^2 + u^2 \right)
\]

\[
|\mathcal{M}(gg \rightarrow \gamma(Z^0))|^{2}_{\alpha' \rightarrow 0} \rightarrow 0
\]
2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged \Rightarrow

These amplitudes are completely model independent!

$$|\mathcal{M}(qg \rightarrow qg)|^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[V_s(\alpha') V_u(\alpha') - \frac{4}{9} \frac{1}{su} (sV_s(\alpha') + uV_u(\alpha'))^2 \right]$$

\Rightarrow dijet events

$$|\mathcal{M}(qg \rightarrow q\gamma(Z^0))|^2 = -\frac{1}{3} g_3^4 Q_A^2 \frac{s^2 + u^2}{stu t^2} (sV_s(\alpha') + uV_u(\alpha'))^2$$

Note: Cullen, Perelstein, Peskin (2000) considered: $e^+ e^- \rightarrow \gamma \gamma$
2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged \(\Rightarrow \)

These amplitudes are completely model independent!

\[\alpha' \rightarrow 0 : \text{ agreement with SM !} \]

\[
|M(qg \rightarrow qg)|_{\alpha' \rightarrow 0}^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[1 - \frac{4}{9} \frac{1}{su} (s + u)^2 \right]
\]

\[
|M(qg \rightarrow q\gamma(Z^0))|_{\alpha' \rightarrow 0}^2 = -\frac{1}{3} g_3^4 Q_A^2 \frac{s^2 + u^2}{stu^2} (s + u)^2
\]

Note: Cullen, Perelstein, Peskin (2000) considered:

\[e^+ e^- \rightarrow \gamma \gamma \]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
These stringy corrections can be seen in dijet events at LHC:

\[\Gamma_{\text{Reg}} = 15 - 150 \text{ GeV} \]

Widths can be computed in a model independent way!

\[M_{\text{Regge}} = 2 \text{ TeV} \]

\[\Gamma_{\text{Regge}} = 15 - 150 \text{ GeV} \]
These stringy corrections can be seen in dijet events at LHC:

\[\Gamma_{\text{Regge}} = 15 - 150 \text{ GeV} \]

Widths can be computed in a model independent way!

\[M_{\text{Regge}} = 2 \text{ TeV} \]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
4 fermion amplitudes:

Exchange of Regge, KK and winding resonances.

These amplitudes are more model dependent and test the internal CY geometry.

Constrained by FCNC's

\[|M(qq \to qq)|^2 = \frac{2}{9} \frac{1}{t^2} \left[(sF_{tu}^{bb}(\alpha'))^2 + (sF_{tu}^{cc}(\alpha'))^2 + (uG_{ts}^{bc}(\alpha'))^2 + (uG_{ts}^{cb}(\alpha'))^2 \right] + \frac{2}{9} \frac{1}{u^2} \left[(sF_{ut}^{bb}(\alpha'))^2 + (sF_{ut}^{cc}(\alpha'))^2 \right. \\
\left. + (tG_{us}^{bc}(\alpha'))^2 + (tG_{us}^{cb}(\alpha'))^2 \right] - \frac{4}{27} \frac{s^2}{tu} F_{tu}^{bb}(\alpha') F_{ut}^{bb}(\alpha') + F_{tu}^{cc}(\alpha') F_{ut}^{cc}(\alpha') \]

depend on internal geometry

4 fermion amplitudes:

Exchange of Regge, KK and winding resonances.

These amplitudes are more model dependent and test the internal CY geometry.

Constrained by FCNC's

\(\alpha' \to 0 : \) agreement with SM!

\[
|M(qq \to qq)|_{\alpha' \to 0}^2 = \frac{4}{9} \left[\frac{s^2 + u^2}{t^2} \right] + \frac{4}{9} \left[\frac{s^2 + t^2}{u^2} \right] - \frac{8}{27} \frac{s^2}{t u}
\]

Dominant contribution:

\[F_{tu}^{bb} = 1 + \frac{g_b^2 t}{g_a^2 u} + \frac{g_b^2 t}{g_a^2} \frac{N_p \Delta}{u - M_{ab}^2} \]

\[G_{tu}^{bc} = \tilde{G}_{tu}^{bc} = 1 \]

\[M_{ab}^2 = (M_{KK}^{(b)})^2 + (M_{\text{wind.}}^{(a)})^2, \quad \Delta \sim e^{-M_{ab}^2/M_s^2} \]

\(M_{ab} \): KK of SU(2) branes and winding modes of SU(3) branes:

\[M_{ab} = 0.7 M_s \]

\(N_p \): Degeneracy of KK-states; take \(N_p = 3 \)

\(\Delta \): Thickness of D-branes
Dijet angular contribution by t-channel exchange:

CMS detector simulation:

Luminosity 1fb^{-1} 10fb^{-1}

D. Lüst, Strings at the LHC, KITP, 14th April 2010
(2) Five point scattering amplitudes (3 jet events):

They depend on two characteristic functions:

(i) 5 gluons:

\[\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+) = (V^{(5)}(\alpha', k_i) z_2 - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_i)) \times \mathcal{M}_YM^{(5)} \]

(Stieberger, Taylor (2006))

(ii) 3 gluons, 2 quarks:

\[\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \overline{q}_5^+) = (V^{(5)}(\alpha', k_i) - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_i)) \times \mathcal{N}_YM^{(5)} \]

Field theory factors:

\[\mathcal{M}^{(5)}_YM = \frac{4g_i^3 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle} \]

\[\mathcal{N}^{(5)}_YM = \frac{4g_i^3 \langle 15 \rangle \langle 14 \rangle^3}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle} \]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
(2) Five point scattering amplitudes (3 jet events):

They depend on two characteristic functions:

(i) 5 gluons:

\(A(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+) \alpha' \rightarrow 0 \rightarrow M^{(5)}_{YM}, \quad (V^{(5)}_{z_2} = 1 + \zeta(2)\mathcal{O}(\alpha'^2), \quad P^{(5)} = \zeta(2)\mathcal{O}(\alpha'^2)) \)

(Stieberger, Taylor (2006))

(ii) 3 gluons, 2 quarks:

\(A(g_1^-, g_2^+, g_3^+, q_4^-, \bar{q}_5^+) = (V^{(5)}(\alpha', k_i) - 2i\epsilon(1, 2, 3, 4)P^{(5)}(\alpha', k_i)) \times N^{(5)}_{YM} \)

Field theory factors:

\[M^{(5)}_{YM} = \frac{4g^3_{YM}\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle} \]

\[N^{(5)}_{YM} = \frac{4g^3_{YM}\langle 15 \rangle \langle 14 \rangle^3}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle} \]

D. Lüst, Strings at the LHC, KITP, 14th April 2010
(2) Five point scattering amplitudes (3 jet events):

They depend on two characteristic functions:

(i) 5 gluons:

\[\mathcal{M}^{(5)}_{YM} = \frac{4g^3_{YM}\langle12\rangle^4}{\langle12\rangle\langle23\rangle\ldots\langle51\rangle}\]

\[\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+)_{\alpha'\to 0} \to \mathcal{M}^{(5)}_{YM}, \quad (V_{z_2}^{(5)} = 1 + \zeta(2)\mathcal{O}(\alpha'^2), \quad P^{(5)} = \zeta(2)\mathcal{O}(\alpha'^2))\]

(ii) 3 gluons, 2 quarks:

\[\mathcal{N}^{(5)}_{YM} = \frac{4g^3_{YM}\langle15\rangle\langle14\rangle^3}{\langle12\rangle\langle23\rangle\ldots\langle51\rangle}\]

\[\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \bar{q}_5^+)_{\alpha'\to 0} \to \mathcal{N}^{(5)}_{YM}\]
The two kinds of amplitudes are universal: the same Regge states are exchanged:

\[| k; n \rangle | k'; n' \rangle \]
(iii) 1 gluon, 4 quarks:

This amplitude has a similar structure as the 4 quark amplitude: exchange of Regge and KK modes.

Factorization on the 4 quark amplitude:

Factorization on the 2 quark - 2 gluon amplitude:
Conclusions (for low string scale models):
Conclusions (for low string scale models):

- One can make some model independent predictions:

 True for a large class of models in the string landscape!
 (Independent of amount of (unbroken) supersymmetry!)

 String tree level, 4-point processes with 2 or 4 gluons
 observable at LHC ?? - M_{string} ??
Conclusions (for low string scale models):

- One can make some model independent predictions:
 True for a large class of models in the string landscape!
 (Independent of amount of (unbroken) supersymmetry!)
 String tree level, 4-point processes with 2 or 4 gluons
 observable at LHC \(M_{\text{string}} \) ?

- Additional informations from spin of heavy modes:

 String cross sections for direct production of heavy modes.

 (D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress)
Conclusions (for low string scale models):

- One can make some model independent predictions:

 True for a large class of models in the string landscape!

 (Independent of amount of (unbroken) supersymmetry!)

 String tree level, 4-point processes with 2 or 4 gluons

 ☛ observable at LHC ?? - M_{string}??

- Additional informations from spin of heavy modes:

 String cross sections for direct production of heavy modes.

 (D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress)

- Further constraints from model dependent processes:

 (FCNC: R. Blumenhagen, A. Deser, D. Lüst, work in progress)
Conclusions (for low string scale models):

- One can make some model independent predictions:
 - True for a large class of models in the string landscape!
 - (Independent of amount of (unbroken) supersymmetry!)
 - String tree level, 4-point processes with 2 or 4 gluons
 - Observable at LHC - M_{string}
- Additional informations from spin of heavy modes:
 - String cross sections for direct production of heavy modes.
 - (D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress)
- Further constraints from model dependent processes:
 - (FCNC: R. Blumenhagen, A. Deser, D. Lüst, work in progress)
- Can one get (mirage) gauge coupling unification?
Conclusions (for low string scale models):

- One can make some model independent predictions:
 True for a large class of models in the string landscape!
 (Independent of amount of (unbroken) supersymmetry!)
 String tree level, 4-point processes with 2 or 4 gluons ♦ observable at LHC ?? - \(M_{\text{string}} ?? \)
- Additional informations from spin of heavy modes:
 String cross sections for direct production of heavy modes.
 (D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress)
- Further constraints from model dependent processes:
 (FCNC: R. Blumenhagen, A. Deser, D. Lüst, work in progress)
- Can one get (mirage) gauge coupling unification?
- What is the cosmology of low string scale models?
If nature choses weakly coupled strings with a string scale at a few TeV, LHC should find them!
Thank you !