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of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer

[!,A
1
], level1

[!,B
1
], level1 [M,A

2
], level2

FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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FIG. 1: (Color) Dynamical spin structure factor of the N=36 sample. The eight panels display frequency scans S(Q, ω) (η = 0.02J) at
labeled wavevectors Q in the extended Brillouin zone shown in the lower right center. Note that the intensity scales differ among the different
panels. The Γ point has no weight and is not shown. The blue vertical lines show the pole location and intensity of the continued fraction. The
vertical dotted magenta line denotes the finite size spin gap in the corresponding momentum sector. The dashed red line marks the position
of the first frequency moment ω̄ =

∫
dω ω S(Q, ω)/S(Q). In the rightmost column the static spin structure factor of the pure Heisenberg

model on the kagome lattice is shown, as an intensity plot (1) and along the path Γ − (e) − (g) − Γ (2). The static structure factor for the
q = 0 (3) and

√
3×

√
3 (4) Néel order states induced by appropriate second neighbor couplings are also displayed.

Dynamical spin structure factor – The energy and momen-
tum dependence of the dynamical structure factor:

S(Q, ω) = − 1
π

Im〈Sz(−Q)
1

ω − (H − EGS) + iη
Sz(Q)〉 ,

(3)
is directly relevant for inelastic neutron scattering (INS) ex-
periments and therefore a quantity of central interest. In mag-
netically ordered systems we expect to see dispersive, long-
lived spin waves [11], while one-dimensional systems in ap-
propriate regimes reveal spinon continua with a rich struc-
ture [12].

Our numerical results for the kagome lattice are presented
in the left part of Fig. 1. The shaded panels display an en-
ergy cut at the wave vector indicated by the panel position
and its label referring to specific points in the extended BZ.
Each panel displays the broadened (η=0.02J) spectral func-
tion (black line), the locations and weights of the poles of the
continued fraction expansion (blue vertical lines), the finite
size spin gap in the corresponding momentum sector (dot-
ted vertical line), and the first frequency moment ω̄(Q) =

∫
dω ω S(Q, ω)/S(Q) (dashed vertical line).
Consistent with the static structure factor, the dynami-

cal spin response function concentrates essentially in the ex-
tended BZ (points g, f, e, h, d of Fig. 1). The main specificity
of this system is the stretching of the magnetic response in
each Q-sector on a very large number of excited states span-
ning a large bandwidth of ∼ 2 − 3J , beginning immediately
above the (finite-size) gap. This is quite different from the
spectrum of a Néel ordered system on the same system size,
where typically ∼ 90% of the spectral weight is carried by
very few poles in each Q-sector associated to the Bragg peak
and the one-magnon modes [13].

In order to address finite size effects we present spectral
function at the wave vectors (g) and (i) for N = 24 and 36
spins in Fig. 2(a) and (b). The characteristic width in energy
as well as the prominent response at low ω for wave vector (g)
are clearly stable with respect to finite size effects. Fig. 2 gives
a hint of the finite size effects on the local spin dynamics. Be-
yond fine structures that are most probably finite size effects,
the combination of the two figures shows that the smearing of
the spectral weight on a very large number of incoherent ex-

Dynamical Spin Structure Factor (~ INS)

ED, 36 sites AML, C. Lhuillier, arXiv:0901.1065
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Local Dimer Autocorrelations (~ Raman)3
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FIG. 2: (Color online) Upper panel: Finite size behavior of the
spectral functions at two different points in the Brillouin zone: g (a)
and i (b) in the convention of Fig. 1. Lower panel: (c) Local spin
autocorrelation function Sloc(ω) =

∫
dQ S(Q, ω) for N = 24,

30 and 36 sites. (d) The relative accumulated spectral weight as a
function of ω/J . All spectral functions have been broadened using
η = 0.05J .

citations is a strong feature of the system. The first panel of
this same figure equally shows an increase with system size of
the low energy response at point g (mapping on the Γ point in
the reduced BZ), a trend that may be a significant finite size
effect.

Contributing to the low energy magnetic response a few
poles appear a bit stronger than the continuum (in Fig. 1 p
anels g to d). These ”stronger” peaks do not sign a definite
symmetry breaking pattern: all competing simple magnetic
orders do appear in these low lying excitations: by decreasing
order of weight the q=0 order (point g in BZ), a twelve sublat-
tice Néel order [? ? ? ] (point d in BZ) and the

√
3×

√
3 order

(point e in BZ) but in fact there are strong peaks in all sectors
(g, f, e, h, d). Perhaps more interesting in all momentum sec-
tors where it is meaningful to define an angular momentum,
th e eigenstates which give the strongest response have a non
zero angular momentum (i.e. these excited eigenstates take a
phase factor e±i2π/3 in a non trivial operation of C3).

Effect of impurities – We have also studied the influence
of a single impurity on the spin dynamics by depleting a N =

0 1 2 3 4
!/J

0

0.2

0.4

0.6

0.8

L
o

c
a

l 
D

im
e

r 
D

y
n

a
m

ic
s
(!

)

N=36, Kagome

0 2 4 6
!/J

0

0.4

0.8
N=26, Square

0 1 2 3 4
!/J

0

0.4

0.8
N=32, Checkerboard

Domain
 Walls

Multi-Triplon Continuum

FIG. 3: (Color) Dynamical singlet fluctuations for three different
systems. Main plot: kagome lattice. Upper inset: Checkerboard
lattice with plaquette-like valence bond crystal ground state. Lower
inset: Unfrustrated square lattice exhibiting Néel order. The plot-
ted quantity represents well the qualitative features of the Raman re-
sponse of the three systems.

27 sample by one site. The averaged dynamical spin response
resembles Fig 2(c) with an additional strong resonance-like
feature at ω ∼ J due to the strong singlet forming on the
bonds next to the vacant site [24].

Singlet fluctuations – In order to assess the importance of
the abundant number of low energy singlet excitations for op-
tical probes and to investigate the tendencies towards valence
bond crystal ordering, we study the dynamical fluctuations of
a local nearest neighbor dimer operator:

Di,j = Si · Sj − 〈Si · Sj〉

Di,j(ω) = − 1
π

Im〈Di,j
1

ω − (H − EGS) + iη
Di,j〉 (4)

The interest in this operator is twofold. First one would expect
a spontaneous symmetry breaking due to dimerization appear
in this quantity as an important zero frequency contribution,
and even more interestingly this operator is also closely re-
lated (although not equivalent) to the Raman or RIXT reponse
of a spin system [29]. The fluctuation spectrum is shown in
Fig. 3, where a broad response from the lowest singlet up to
energies ∼ 4J is seen with a strong increase of the response
as one moves towards lowest energies. This is to be contrasted
with the response of the Heisenberg model on a checker-board
lattice (large inset in Fig. 3) where the low lying peak uniquely
comes from the valence-bond symmetry breaking partner of
the ground-state [21]. On the kagome lattice there is a strong
dimer-dimer response on many low lying levels of any spa-
tial sector which can be excited by the dimer-dimer operator.
We do not see any precursor of a specific spatial symmetry
breaking.

Both the response of the square lattice and of the checker-
board lattice are easily understood in their whole extent. On

ED, 36 sites AML, C. Lhuillier, arXiv:0901.1065
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FIG. 2: (Color online) Upper panel: Finite size behavior of the
spectral functions at two different points in the Brillouin zone: g (a)
and i (b) in the convention of Fig. 1. Lower panel: (c) Local spin
autocorrelation function Sloc(ω) =

∫
dQ S(Q, ω) for N = 24,

30 and 36 sites. (d) The relative accumulated spectral weight as a
function of ω/J . All spectral functions have been broadened using
η = 0.05J .

citations is a strong feature of the system. The first panel of
this same figure equally shows an increase with system size of
the low energy response at point g (mapping on the Γ point in
the reduced BZ), a trend that may be a significant finite size
effect.

Contributing to the low energy magnetic response a few
poles appear a bit stronger than the continuum (in Fig. 1 p
anels g to d). These ”stronger” peaks do not sign a definite
symmetry breaking pattern: all competing simple magnetic
orders do appear in these low lying excitations: by decreasing
order of weight the q=0 order (point g in BZ), a twelve sublat-
tice Néel order [? ? ? ] (point d in BZ) and the
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3 order

(point e in BZ) but in fact there are strong peaks in all sectors
(g, f, e, h, d). Perhaps more interesting in all momentum sec-
tors where it is meaningful to define an angular momentum,
th e eigenstates which give the strongest response have a non
zero angular momentum (i.e. these excited eigenstates take a
phase factor e±i2π/3 in a non trivial operation of C3).

Effect of impurities – We have also studied the influence
of a single impurity on the spin dynamics by depleting a N =
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FIG. 3: (Color) Dynamical singlet fluctuations for three different
systems. Main plot: kagome lattice. Upper inset: Checkerboard
lattice with plaquette-like valence bond crystal ground state. Lower
inset: Unfrustrated square lattice exhibiting Néel order. The plot-
ted quantity represents well the qualitative features of the Raman re-
sponse of the three systems.

27 sample by one site. The averaged dynamical spin response
resembles Fig 2(c) with an additional strong resonance-like
feature at ω ∼ J due to the strong singlet forming on the
bonds next to the vacant site [24].

Singlet fluctuations – In order to assess the importance of
the abundant number of low energy singlet excitations for op-
tical probes and to investigate the tendencies towards valence
bond crystal ordering, we study the dynamical fluctuations of
a local nearest neighbor dimer operator:

Di,j = Si · Sj − 〈Si · Sj〉

Di,j(ω) = − 1
π

Im〈Di,j
1

ω − (H − EGS) + iη
Di,j〉 (4)

The interest in this operator is twofold. First one would expect
a spontaneous symmetry breaking due to dimerization appear
in this quantity as an important zero frequency contribution,
and even more interestingly this operator is also closely re-
lated (although not equivalent) to the Raman or RIXT reponse
of a spin system [29]. The fluctuation spectrum is shown in
Fig. 3, where a broad response from the lowest singlet up to
energies ∼ 4J is seen with a strong increase of the response
as one moves towards lowest energies. This is to be contrasted
with the response of the Heisenberg model on a checker-board
lattice (large inset in Fig. 3) where the low lying peak uniquely
comes from the valence-bond symmetry breaking partner of
the ground-state [21]. On the kagome lattice there is a strong
dimer-dimer response on many low lying levels of any spa-
tial sector which can be excited by the dimer-dimer operator.
We do not see any precursor of a specific spatial symmetry
breaking.

Both the response of the square lattice and of the checker-
board lattice are easily understood in their whole extent. On
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FIG. 2: (Color online) Upper panel: Finite size behavior of the
spectral functions at two different points in the Brillouin zone: g (a)
and i (b) in the convention of Fig. 1. Lower panel: (c) Local spin
autocorrelation function Sloc(ω) =

∫
dQ S(Q, ω) for N = 24,

30 and 36 sites. (d) The relative accumulated spectral weight as a
function of ω/J . All spectral functions have been broadened using
η = 0.05J .

citations is a strong feature of the system. The first panel of
this same figure equally shows an increase with system size of
the low energy response at point g (mapping on the Γ point in
the reduced BZ), a trend that may be a significant finite size
effect.

Contributing to the low energy magnetic response a few
poles appear a bit stronger than the continuum (in Fig. 1 p
anels g to d). These ”stronger” peaks do not sign a definite
symmetry breaking pattern: all competing simple magnetic
orders do appear in these low lying excitations: by decreasing
order of weight the q=0 order (point g in BZ), a twelve sublat-
tice Néel order [? ? ? ] (point d in BZ) and the
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(point e in BZ) but in fact there are strong peaks in all sectors
(g, f, e, h, d). Perhaps more interesting in all momentum sec-
tors where it is meaningful to define an angular momentum,
th e eigenstates which give the strongest response have a non
zero angular momentum (i.e. these excited eigenstates take a
phase factor e±i2π/3 in a non trivial operation of C3).

Effect of impurities – We have also studied the influence
of a single impurity on the spin dynamics by depleting a N =
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lattice with plaquette-like valence bond crystal ground state. Lower
inset: Unfrustrated square lattice exhibiting Néel order. The plot-
ted quantity represents well the qualitative features of the Raman re-
sponse of the three systems.

27 sample by one site. The averaged dynamical spin response
resembles Fig 2(c) with an additional strong resonance-like
feature at ω ∼ J due to the strong singlet forming on the
bonds next to the vacant site [24].

Singlet fluctuations – In order to assess the importance of
the abundant number of low energy singlet excitations for op-
tical probes and to investigate the tendencies towards valence
bond crystal ordering, we study the dynamical fluctuations of
a local nearest neighbor dimer operator:

Di,j = Si · Sj − 〈Si · Sj〉

Di,j(ω) = − 1
π

Im〈Di,j
1

ω − (H − EGS) + iη
Di,j〉 (4)

The interest in this operator is twofold. First one would expect
a spontaneous symmetry breaking due to dimerization appear
in this quantity as an important zero frequency contribution,
and even more interestingly this operator is also closely re-
lated (although not equivalent) to the Raman or RIXT reponse
of a spin system [29]. The fluctuation spectrum is shown in
Fig. 3, where a broad response from the lowest singlet up to
energies ∼ 4J is seen with a strong increase of the response
as one moves towards lowest energies. This is to be contrasted
with the response of the Heisenberg model on a checker-board
lattice (large inset in Fig. 3) where the low lying peak uniquely
comes from the valence-bond symmetry breaking partner of
the ground-state [21]. On the kagome lattice there is a strong
dimer-dimer response on many low lying levels of any spa-
tial sector which can be excited by the dimer-dimer operator.
We do not see any precursor of a specific spatial symmetry
breaking.

Both the response of the square lattice and of the checker-
board lattice are easily understood in their whole extent. On
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Dimer correlations of low lying singlets (N=36)
2

II. MODEL, SAMPLE AND SPECTRUM

We study in this paper the Heisenberg antiferromagnetic
(J > 0) model with spins S = 1/2 on the Kagomé lattice,
whose Hamiltonian reads

H = J
∑

〈i,j〉

Si · Sj (1)

where the sum runs over all NN spin pairs. Five samples are
considered, each of which is depicted in Fig. 1: with 12 (this
sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
every sample. Sample s36 is particularly interesting in two

12 18

24

36

30

FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
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respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
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where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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6

of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
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FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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whose Hamiltonian reads

H = J
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where the sum runs over all NN spin pairs. Five samples are
considered, each of which is depicted in Fig. 1: with 12 (this
sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
every sample. Sample s36 is particularly interesting in two
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FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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FIG. 10: The states that are circled in the spectrum Fig. 2 has “particularly large” dimer correlations. The correlation pattern of those of
them that have been skipped in Fig. 7 are displayed here in the last three rows. Correlations in the ground state (i.e. first level in [Γ, A1]) are
shown as well for comparison in the first row. The black bond is taken as reference bond, the colored bonds are probing bonds. Their width is
proportional to the strength of the correlation, and their color indicate the sign of the correlation (blue means positive, red means negative).

6

of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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II. MODEL, SAMPLE AND SPECTRUM

We study in this paper the Heisenberg antiferromagnetic
(J > 0) model with spins S = 1/2 on the Kagomé lattice,
whose Hamiltonian reads

H = J
∑

〈i,j〉

Si · Sj (1)

where the sum runs over all NN spin pairs. Five samples are
considered, each of which is depicted in Fig. 1: with 12 (this
sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
every sample. Sample s36 is particularly interesting in two
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FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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FIG. 10: The states that are circled in the spectrum Fig. 2 has “particularly large” dimer correlations. The correlation pattern of those of
them that have been skipped in Fig. 7 are displayed here in the last three rows. Correlations in the ground state (i.e. first level in [Γ, A1]) are
shown as well for comparison in the first row. The black bond is taken as reference bond, the colored bonds are probing bonds. Their width is
proportional to the strength of the correlation, and their color indicate the sign of the correlation (blue means positive, red means negative).

6

of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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FIG. 10: The states that are circled in the spectrum Fig. 2 has “particularly large” dimer correlations. The correlation pattern of those of
them that have been skipped in Fig. 7 are displayed here in the last three rows. Correlations in the ground state (i.e. first level in [Γ, A1]) are
shown as well for comparison in the first row. The black bond is taken as reference bond, the colored bonds are probing bonds. Their width is
proportional to the strength of the correlation, and their color indicate the sign of the correlation (blue means positive, red means negative).
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of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system

J. Sudan & AML, ’10
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Thank you !


