Metal-insulator transition and Fermi surface

evolution in frustrated triangular-based lattices

International School for Advanced Studies (SISSA) CNR Istituto Officina dei Materiali (IOM)

Federico Becca

S. Sorella

L.F. Tocchio*, A. Parola**, and C. Gros*

* Goethe Universität Frankfurt, Germany

** Universitá di Como, Italy

KITP, November 2010

Outline

- The κ -(ET)₂X family
- The Hubbard model on the triangular lattice
- Ground-state wave functions in Variational Monte Carlo
- Phase diagram for the anisotropic triangular lattice
- Magnetic properties in the insulating phase
- Fermi surface reconstruction at the MIT

The κ -(ET)₂X family: phase diagrams

Y. Kurosaki et al., PRL 95, 177001 (2005)

F. Kagawa et al., Nature 436, 534 (2005)

 κ -(ET)₂Cu₂(CN)₃ is an insulator without magnetic order at ambient pressure, down to $T \simeq 32mK$ ($T \ll \Theta_{CW} \simeq 250K$) Y. Shimizu *et al.*, PRL 91, 107001 (2003)

The κ -(ET)₂X family: model structure

- 2D layers of ET molecules with a strong dimerization
- The dimers form a triangular lattice with one hole per dimer and hopping integrals t and t' (single-band model)

Estimates of the hopping integrals t and t' in DFT H.C. Kandpal *et al.*, PRL 103, 067004 (2009); K. Nakamura *et al.*, JPSJ 78, 083710 (2009)

- $t'/t \simeq 0.83$ for X=Cu₂(CN)₃
- $t'/t \simeq 0.58$ for X=Cu(SCN)₂
- $t'/t \simeq 0.44$ for X=Cu[N(CN)₂]Cl Estimates of the on-site Coulomb repulsion U are controversial
 - $U/t \simeq 12-15$ in JPSJ 78, 083710 (2009)
 - $U/t \simeq 5-7$ in PRL 103, 067004 (2009)

The single-band Hubbard model

A

- t'/t = 0.85 and t'/t = 0.6relevant for κ -(ET)₂Cu₂(CN)₃ and κ -(ET)₂Cu(SCN)₂
- One particle per lattice site

Numerical technique to determine the ground-state properties: Variational Monte Carlo

J. Liu, J. Schmalian, and N. Trivedi, PRL 94, 127003 (2005)

The variational wave functions

$$|\Psi
angle = \mathcal{J}\mathcal{J}_s|\mathcal{MF}
angle$$

M. Capello et al. PRL 94, 026406 (2005)

 $|\mathcal{MF}
angle$ is the ground state of a mean-field Hamiltonian

(1)
$$\mathcal{H}_{BCS} = \sum_{i,j,\sigma} \tilde{t}_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} + h.c. - \mu \sum_{i,\sigma} c^{\dagger}_{i,\sigma} c_{i,\sigma} + \sum_{i,j} \Delta_{ij} c^{\dagger}_{i,\uparrow} c^{\dagger}_{j,\downarrow} + h.c.$$

(2)
$$\mathcal{H}_{AF} = \sum_{i,j,\sigma} \tilde{t}_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} + h.c. + \Delta_{AF} \sum_{i} \mathbf{n}_{i} \mathbf{S}_{i}$$

$$\mathcal{J}_s = \exp\left[-\frac{1}{2}\sum_{i,j}u_{i,j}S_i^z S_j^z\right] \qquad \mathcal{J} = \exp\left[-\frac{1}{2}\sum_{i,j}v_{ij}n_i n_j\right]$$

+ Backflow correlations in the Slater determinant Redefinition of the electronic coordinates

R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956)

Metal or insulator?

Ansatz for the low-energy excitations

 $|\Psi_q\rangle = n_q |\Psi_0\rangle$

Feynman, Phys. Rev. (1954)

$$\frac{f\text{-sum}}{\text{rule}} \quad \Delta_q = \frac{\langle \Psi_q | (H - E_0) | \Psi_q \rangle}{\langle \Psi_q | \Psi_q \rangle} = \frac{\langle \Psi_0 | [n_{-q}, [H, n_q]] | \Psi_0 \rangle}{2N_q} \sim \frac{q^2}{N_q}$$

$$\boxed{N_q = \frac{\langle \Psi_0 | n_{-q} n_q | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}}$$

 $N_q \sim |q| \Rightarrow \Delta_q \to 0 \Rightarrow$ metal $N_q \sim q^2 \Rightarrow \Delta_q$ is finite \Rightarrow insulator (upper bound) Difference in the electron organization

Reatto-Chester relation for N_q and Jastrow factor

$$N_q = \frac{\langle \Psi | n_{-q} n_q | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

RPA Reatto and Chester, Phys. Rev. (1967)

- For continuous systems
- In the weak-coupling regime

$$N_{q} = \frac{N_{q}^{0}}{1 + 2v_{q}N_{q}^{0}} \sim \frac{1}{v_{q}}$$

 $N_q^0 = rac{\langle \mathcal{D} | n_{-q} n_q | \mathcal{D} \rangle}{\langle \mathcal{D} | \mathcal{D} \rangle} \sim |q|$ is the uncorrelated structure factor

 $v_q \sim 1/q^2$ cannot be found with RPA for short-range models

On the continuum for free electrons Gaskell, Proc. Phys. Soc. (1961)

$$2v_q = -\frac{1}{N_q^0} + \sqrt{\frac{1}{(N_q^0)^2} + \frac{4m\Omega_q}{(\hbar q)^2}} \sim \frac{1}{|q|}$$

Optimized Jastrow parameters

Hellberg and Mele (1991); Yokoyama and Ogata (1991); Gros and Valenti (1993)

OK for the metal (finite doping) Wrong for the insulator! QUALITATIVELY valid for small q

1D for U/t = 10At finite doping $v_q \sim 1/|q|$ At half filling $v_q \sim 1/q^2$

Two-dimensional (paramagnetic) Hubbard model

Backflow correlations in variational wave functions

Correlation between empty sites and doubly occupied sites inside the mean-field variational wave function $|BCS\rangle$ or $|AF\rangle$

Redefinition of the electronic coordinates r R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956)

On the lattice, electronic positions are limited to lattice sites!!

$$\phi_k(\boldsymbol{r}_{\alpha}^b) \simeq \phi_k^b(\boldsymbol{r}_{\alpha}) \equiv \phi_k(\boldsymbol{r}_{\alpha}) + \sum_{\beta} c_{\alpha,\beta} \phi_k(\boldsymbol{r}_{\beta})$$

L.F. Tocchio et al., PRB 78, 041101(R) (2008)

Variational results vs exact ones

(Lanczos on an 18-site lattice)

Backflow correlations strongly improve $|\Psi_{BCS}\rangle$ (a further improvement may be obtained by GFMC)

BCS pairing and magnetic order

The unfrustrated character is stable from t' = 0 to $t'/t \simeq 0.9$:

- The BCS pairing has $d_{x^2-y^2}$ symmetry
- The best magnetic order is collinear (Néel order)

Metal-insulator transition

•
$$E_q - E_0 \simeq \frac{q^2}{N(q)}$$

• $N(q) = \langle n_q n_{-q} \rangle \sim q^2$ for $|q| \to 0$ in the insulating (gapped) phase

• $N(q) = \langle n_q n_{-q} \rangle \sim |q|$ for $|q| \to 0$ in the metallic (gapless) phase

Small BCS pairing in the metallic phase The metallic phase is likely to be not superconducting

Variational phase diagram for t'/t = 0.6 and 0.85

-0.9 -1 -1.04 -0.95 t'/t=0.85 E/(4t²/U) t'/t=0.6 -1 -1.08 -1.05 -1.12 $|\Psi_{BCS}\rangle$ -1.1 -1.16 $|\Psi_{AF}\rangle$ |Ψ_{BCS}> ◀ $|\Psi_{FG}>$ $|\Psi_{AF}\rangle$ -1.15 -1.2 [[] 12 16 20 24 28 32 8 12 16 20 24 0 4 U/t U/t

Comparison between the variational energies

- t'/t = 0.6: $|\Psi_{AF}\rangle$ has always the best variational energy in the insulating phase
- t'/t = 0.85: Magnetic state for $7.5 \leq U \leq 13$; Spin-liquid state for $U \geq 13$
- t'/t = 0.85: The BCS pairing is relevant in the insulating phase
- t'/t = 0.85: The spin-liquid state is favored only thanks to backflow correlations

Magnetic properties of the insulating phase

$$S(q) = \langle S_q^z S_{-q}^z \rangle \quad S_q^z = \frac{1}{\sqrt{N}} \sum_r e^{iqr} S_r^z$$

- VMC (empty symbols) with $|\Psi_{BCS}\rangle$ as a variational wave function
- Green's Function Monte Carlo (full symbols)

S(q) has a peak at $Q = (\pi, \pi)$, corresponding to Néel order

- No-long range magnetic order within VMC
- Finite magnetization at t'/t = 0.6 (blue symbols)
- No magnetic order at t'/t = 0.85 for U/t = 10, 20 (red symbols): the insulator is always non magnetic!

Phase diagram

Renormalization of the Fermi surface

Perfect nesting of the underlying Fermi surface at the MIT General for frustrated systems (also in the square lattice)

General result: the 1D zig-zag Hubbard model

In 1D $\tilde{t}_2/\tilde{t}_1 \rightarrow 1/2$ implies perfect nesting of the Fermi surface at the MIT

Conclusions and outlook

- t'/t = 0.85: Spin-liquid insulating state
- t'/t = 0.6: Magnetic insulator with Néel order
- BCS pairing is relevant in the insulating phase (no spinon Fermi surface?)
- Spin liquid at strong couplings
- Isotropic triangular lattice? (spin liquid at intermediate couplings?)
 Misguich, Imada, Motrunich, Lee, Mila...
- Fermi surface nesting at the MIT (by doping?)