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Overview

Large Cluster Studies – Motivation
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Cluster Dynamical Mean Field Theory 
with large clusters

Impurity solver – Continuous-Time 
Auxiliary Field with sub-matrix updates

Results – Thermodynamics 
of the 3D Hubbard model 
(above TN), 2D Pseudogap 
physics
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Motivation – Large Cluster Studies
Optical Lattice Systems: 
Cold Fermionic Gases

T. Esslinger, Annu. Rev. Condens. 
Matter Phys. 1, 129-152 (2010)

Cold Atomic Gases: goal to simulate 
simple model Hamiltonians

fermionic case: 3D Hubbard model

H = −
�

�ij�,σ

tij(c†iσcjσ + c
†
jσciσ) + U

�

i

ni↑ni↓.

Question to theory [numerics]: What is the thermodynamics of this model? (for all 
fillings, as a function of U/t and T/t? Exact (or controlled) answer is needed.

• Temperatures in experiment are high (for now): When will we reach TN?

• Qualitative physics is comparatively simple and well understood (no exotic 
phases, no long range order above TN)

http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
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Motivation – Large Cluster Studies

Controlled answer needed! Need to obtain results (values, error bars) to arbitrary 
accuracy; no systematic error or uncontrolled approximations.

Candidates:

High Temperature 
Series Expansion

Lattice algorithms 
(BSS, DiagMC, Det. DiagMC)

Single Site Dynamical 
Mean Field Method 
(+AFM/PM self consistency)

Perfect at high 
temperature and for 
nearly empty bands

Strong at half filling, bad 
sign problem away from 
half filling

Different philosophy: Single 
Site DMFT is uncontrolled. 
(does not necessarily mean 
bad!) Henderson et al., Phys. Rev. B 46, 6328 

(1992), De Leo et al., arXiv: 1009.2761
Scalettar et al., Phys. Rev. B 39, 4711 
(1989),Fuchs et al., arxiv:1009.2759
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Motivation – Large Cluster Studies
Another Candidate: Cluster Dynamical Mean Field Theory!

Method based on discretization of the 
self energy in momentum (or real) space

Exact limit is obtained by extrapolating to 
the system with infinite cluster size (as with 
BSS / DiagMC / other lattice simulations). 
This needs large enough cluster sizes
[ here: 48-100 sites ]

Why cluster DMFT instead of lattice methods?

• Convergence is faster than in the lattice simulations.

• Sign problem away from half filling is better in DCA.

• However: Scaling of impurity solver algorithms is worse!
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Cluster Dynamical Mean Field Theory
Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Basis functions

Approximation: 
Systematic truncation 
by cluster sites Nc

‘Machinery’ for obtaining approximated self energy: 
Cluster DMFT. 

Cluster DMFT is a controlled approximation.

Σ(k,ω ) =
�

n

Σn(ω)φn(k) ≈
Nc�

n

Σn(ω)φn(k)

φn(k)
Σn(ω) Energy dependent, k-

independent self-energy

Variants of cluster DMFT: Dynamical Cluster Approximation (used here) and 
Cellular Dynamical Mean Field Theory: Differ in types of basis functions φn(k)
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Cluster DMFT – Impurity Solvers

Σ(k,ω ) =
�

n

Σn(ω)φn(k) ≈
Nc�

n

Σn(ω)φn(k)

Algorithm that produces             : Mapping onto an impurity problem & self-
consistent hybridization with a “bath”.

Σn(ω)

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

HQI = Hloc + Hhyb + Hbath

Hloc =
�

i �i(ni↑ + ni↓) + Uni↑ni↓

Hbath =
�

kα �kαc
†
kαckα

Hhyb =
�

kαb V
αb
k c

†
kαdb + H.c.

• Solve large cluster impurity problems, at and away from half filling, for small and large 
interactions (density-density), at finite temperature.

• No further approximations (Δτ - errors, bath discretization, ...).

Requirements for an ‘impurity solver’ algorithm:

http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003


Cluster DMFT – Impurity Solvers

Σ(k,ω ) =
�

n

Σn(ω)φn(k) ≈
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Algorithm that produces             : Mapping onto an impurity problem & self-
consistent hybridization with a “bath”.

Σn(ω)

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

HQI = Hloc + Hhyb + Hbath

Hloc =
�

i �i(ni↑ + ni↓) + Uni↑ni↓

Hbath =
�

kα �kαc
†
kαckα

Hhyb =
�

kαb V
αb
k c

†
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Only Candidates: Continuous-Time quantum Monte Carlo algorithms. We use: 
Continuous-Time Auxiliary Field (CT-AUX) algorithm.

http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003


Continuous-Time quantum Monte 
Carlo impurity solvers

Diagrammatic expansion of the partition function of an impurity model in the 
interaction or the hybridization, sampling of the resulting series stochastically up to 
infinite order. 

HQI = Ha + Hb

Hybridization Expansion Continuous-Time Auxiliary Field

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)
P. Werner, A. Comanac, L. de Medici, M. Troyer, and 

A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

Ha = Hloc;
Hb = Hhyb + Hbath

Exponential scaling in size 
of local Hilbert space 

Ha = Hbath + Hhyb + H
0
loc;

Hb = H
I
loc

Efficiency dependent on type of 
interaction in HI

loc

A. N. Rubtsov, V. V. Savkin, 
A. I. Lichtenstein, Phys. 

Rev. B 72 035122 (2005) 

Z = Tr Tτe
−βHa exp

�
−

�
β

0
dτH b(τ)

�
=

�

k

(−1)k

�
β

0
dτ1 . . .

�
β

τk−1

dτkTr
�
e
−βHaHb(τk)Hb(τk−1) . . . Hb(τ1)

�
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Continuous-Time Auxiliary Field 
impurity solver

Stochastic sampling of diagrams 
of the partition function:

No truncation of expansion! 0 β

Z =
∞�

k=0

�

s1,···sk=±1

� β

0
dτ1 · · ·

� β

τk−1

dτk

�
K

2β

�k

Zk({sk, τk}),

Zk({si, τi}) ≡ Tr
1�

i=k

exp(−∆τiH0) exp(siγ(n↑ − n↓)).

Partition function expansion

1− βU

K

�
ni↑ni↓ −

ni↑ + ni↓

2

�
=

1
2

�

s=±1

exp (γs(ni↑ − ni↓)) ,

cosh(γ) = 1 +
Uβ

2K
.

Auxiliary field decoupling of 
interaction term s=±1

0 β
τ1τ2 τ3τ4

s = 

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

Compute trace of product of 
exponentials of one-body operators 
as determinant of matrix.

http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
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Continuous-Time Auxiliary Field 
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Sub-Matrix updates
E. Gull, P. Staar, S. Fuchs,  P. Nukala, M. Summers, T. Pruschke, T.C. 
Schulthess, T. Maier, arXiv:1010.3690

Standard updates in auxiliary field impurity solvers: rank one operations (ger), O(N2) 
operations for O(N2) data: dominated by data access.

Sub-Matrix updates: based on matrix (gemm) operations: O(N3) operations on O(N2) 
data:  runs at speed of (fast) CPU/Cache.

Linear algebra reformulated, overhead grows with size of Γ but operations 10x faster

http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690


Technical Challenges 6

Green’s functions. Also, to avoid discretization and bin-
ning errors, Green’s functions are best measured directly
in Matsubara frequencies.

IV. RESULTS

We present two types of results. First we examine how
submatrix updates work in practice, using several scaling
benchmarks. We then illustrate a physics application
where we test the DCA approximation on clusters with
up to 100 sites, showing how reliable extrapolations to
the infinite system may be obtained.
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FIG. 2. Time per update (in arbitrary units) for submatrix
and rank one CT-AUX updates. Open circles (black online):
rank one updates. Filled diamonds, triangles, squares, and
left triangles: submatrix updates for kmax == 32, 64, 128, and
256. Dashed line: ideal O(k2) scaling, arbitrary prefactor.

A. Scaling of the algorithm

Two types of scaling are commonly analyzed in high
performance computing: the so-called “weak” scaling,
which defines how the the time to solution varies as a
function of resources used for a given problem, and the
“strong” scaling, which is defined as how the time to
solution varies with varying difficulty of a problem for
constant resources.
We begin by analyzing the “strong” scaling, or the scal-

ing of the time to solution for fixed resources but varying
problem size. As “problem size” we consider the average
expansion order or matrix size, 〈k〉. In absence of a sign
problem (which will not be considered in this article)
the average expansion order is related to the potential
energy and therefore e.g. extensive in cluster size. For
systems with small average expansion orders (N <

∼ 200),
the entire matrix fits into cache, and therefore there is no
advantage in using submatrix updates. With increasing
average matrix size caching effects become more impor-
tant.
Fig. 2 shows the strong scaling, as the time per up-

date (in arbitrary units) as a function of expansion order

(matrix size), for rank one updates and various sizes of
kmax. The ideal scaling is O(k2) per update, or O(k3) for
〈k〉 updates needed to decorrelate a configuration. The
scaling per updated is indicated by the dashed line.
For small expansion order CT-AUX with and with-

out submatrix updates behave similarly. For expansion
orders of 256 and larger, the speed increase from subma-
trix updates becomes apparent, and at expansion orders
of 512 and larger the difference with and without subma-
trix updates corresponds to the difference of data trans-
fer rates between cache and CPU and main memory and
CPU, or the difference at which memory intensive (Sher-
man Morrison like vector operations) and CPU intensive
(Woodbury like matrix operations) run.
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FIG. 3. Updates per time as a function of kmax. 4-site DCA,
U/t = 9,βt = 20, t′/t = −0.3, 〈k〉 = 320.

The optimal choice of the expansion parameter kmax

for the test architecture lies somewhere between 64 and
128 (performance is relatively insensitive to the exact
choice of kmax). This is also illustrated in Fig. 3: for a
small choice of kmax the Woodbury matrix-matrix opera-
tions do not dominate the calculation and the algorithm
is similar to CT-AUX, where much time is spent idling
at memory bottlenecks. Caching effects get more advan-
tageous for larger kmax, until for kmax

>
∼ 128 most of the

time is spent updating and inverting the Γ matrices.
Weak scaling, or the time to solution for a given prob-

lem as a function of resources, is the second important
metric. We show in Fig. 4 the time to solution (in sec-
onds) for the same two problem sets (symbols), as well
as the ideal scaling (dashed lines), as a function of the
number of CPUs employed. This time includes commu-
nications and thermalization overhead that does, as Am-
dahl’s curse40 famously states, not scale. CT-AUX has
a remarkably small thermalization time and is therefore
ideally suitable for parallelization on large machines.

B. Néel temperature for the two-dimensional
Hubbard model

Finally we present a “real live” physics applica-
tion: a calculation of the Néel temperature of the two-
dimensional Hubbard model at half filling, within the
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FIG. 4. Time to solution as a function of the number of CPUs.
Squares (black online): U/t = 8, βt = 10 (〈k〉 = 550), half
filling. Circles (red online): βt = 20 (〈k〉 = 1100. The dashed
lines show the ideal scaling.

DCA approximation, as a function of cluster size. This
system is well suited to testing purposes, because TN is
analytically known to be zero, and logarithmically diver-
gent length scales near T = 0 make it difficult to control
finite size effects. Large clusters are therefore needed to
enable reliable extrapolations as a function of cluster size.
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FIG. 5. Tn vs Nc. Black: CT-AUX. Red: Thomas’ old result.
This needs some serious discussion.

Fig. 5 shows the cluster size dependence of TN . As ob-
served by several authors (cite everyone. Thomas?), the
four-site cluster has strong “plaquette singlet” correla-
tions and does not lie on an extrapolation to the infinite
system. For larger cluster sizes, data is consistent with
the analytically known scaling function (.... is it? need
to see it!?)
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Solve quantum impurity model self-consistently for a range of cluster sizes:

18 36 48 56 64 84 100

Compute thermodynamics: energy, 
density, entropy, free energy, double 
occupancy, spin correlation functions, 
…: Results and error estimates for a 
finite size system.

Extrapolate observable estimate to 
the infinite system size limit using 
known finite size scaling:
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Cluster DMFT vs Lattice Methods
S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, 
T. Pruschke, M. Troyer, arXiv:1009.2759

What is gained by embedding the cluster into a self-consistent bath (vs lattice)?

First self-consistency iteration 
(starting from free solution): 
lattice problem with periodic 
boundary conditions. Sign 
problem for lattice problem : 
the same in  BSS / CT-AUX

• Convergence in DCA seems to be faster: series 64-84-100 sites
comparable to 63, 83, 103 sites in lattice simulation.

• Sign problem is better:

Sign problem away from 
1/2 filling (U=8, 64-site 
cluster at filling 0.2)
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shell !each have four; whereas a complete first shell has six
neighbors". As a result of the periodic boundary conditions
on the cluster, this causes the near-neighbor fluctuations to be
overestimated. As a result, the estimates of TN from these
clusters, shown in Fig. 2 for a finite t ·!"=1/4 !open tri-
angles" and for the data extrapolated to !"=0 !filled tri-
angles", fall well below the scaling curve established by the
best cluster geometries listed in Table I. In general, in this
and in other calculations, we find that the less perfect clusters
tend to overestimate the effects of fluctuations.

Finally, Fig. 3 displays the calculated antiferromagnetic
phase diagram obtained from the DCA and extrapolated to
!"=0 and Nc=# !open circles with error bars". For compari-
son, we included results from other methods: The dynamical
mean-field approximation !DMFA, full circles", Staudt et al.7

!full curve", second order perturbation theory !SOPT, dotted
curve",11,12 the Heisenberg model !dashed curve"13 and the
Weiss mean-field theory for the Heisenberg model !dash-
dotted curve". We took J=4t2 /U for both Heisenberg calcu-
lations. The results from Staudt et al. are reproduced with
good accuracy, but with much smaller clusters. The DMFA
result is obtained through the methods described above when
Nc=1. Both the DMFA and the Weiss mean field are local
approximations which neglect the effect of nonlocal fluctua-
tions. As expected, they agree in the strong coupling regime,
U$12t=W !W is the bandwidth". Both DMFA and SOPT
are only accurate at small U / t, indicating that nonlocal fluc-
tuations are not important for small U. At large U / t the DCA
results for TN approach the curve for the Heisenberg model,
as expected. However, for intermediate and large values of
U /W, the deviation between the present results and the
mean-field results is as large as 30% or more, indicating that

the effects of nonlocal fluctuations are significant.
These methods may be extended to treat other order pa-

rameters or cluster geometries. The Betts method selects
clusters to give good finite size scalings for local quantities
such as the magnetic moment on periodic clusters. Addi-
tional considerations are required for nonlocal order param-
eters such as d-wave superconductivity found in the 2D Hub-
bard model.14 The d-wave order parameter may be
represented on a plaquette of four sites. The best clusters for
d-wave order have a complete set of independent plaquettes
in each shell formed from neighboring plaquettes. Betts’
methods may also be generalized to include clusters with
open boundary conditions. Here, one presumably should
choose the clusters for which the neighbor shells of the cen-
tral site!s" are the most perfect.

In conclusion, we have calculated the antiferromagnetic
phase diagram of the 3D Hubbard model at half filling using
the dynamic cluster approximation and Betts clusters. Well-
converged results are found for relatively small cluster sizes
due to the optimized geometries of these clusters. Recent 2D
Hubbard model calculations with Betts clusters also display
significant improvements14 in finite size effects, although ad-
ditional considerations are required for nonlocal order pa-
rameters. The dramatically increased efficiency of these clus-
ters compared to typically used cluster geometries, such as
cubic lattices, suggests that these clusters should be more
widely used for lattice calculations.

We acknowledge useful discussions with J. P. Hague and
G. Stewart. This research used computational resources of
the Center for Computational Sciences, and was sponsored
by the offices of Basic Energy Sciences and Advanced Sci-
entific Computing Research, U.S. Department of Energy.
Oak Ridge National Laboratory is managed by UT-Battelle,
LLC under Contract No. DE-AC0500OR22725. This re-
search was supported by the NSF Grant No. DMR-0312680
and supported in part by NSF cooperative agreement SCI-
9619020 through resources provided by the San Diego
Supercomputer Center.

TABLE II. 3D cluster geometries, imperfection, and cubicity of
two poor quality bipartite clusters.

Nc a!1 a!2 a!3 Imperfection Cubicity

16Z !2, 0, 0" !0, 2, 0" !0, 0, 4" 7 1.209
26Z !1, 2, 3" !3, 3,−2" !3,−2, 3" 14 1.295

FIG. 2. Cluster size scaling of TN when U / t=8 and t!"=1/4
!open circles" and the result extrapolated to t!"=0 !full circles" as
in Fig. 1.

FIG. 3. Antiferromagnetic phase diagram of the 3D Hubbard
model from our results and different approximations.
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At half filling: Antiferromagnetic state below 
TN. Single site DMFT transition 
temperature too high.

Away from half filling: ?

In 2d: isotropic Fermi Liquid regime in two 
dimensions for small fillings (n ~ 0.7). Cluster 
corrections important for larger fillings

Cluster sign problem far away from half filling 
is much worse than close to half filling!

E.
 G

ul
l, 

M
. F

er
re

ro
, O

. P
ar

co
lle

t, 
A

. G
eo

rg
es

, 
an

d 
A

. J
. M

ill
is

, P
hy

s. 
R

ev
. B

 8
2,

 1
55

10
1 

(2
01

0)

Anything below (or very near) TN not 
considered in this study!

which provide access to this sector!. These are the two sec-
tors which contain the Fermi surface and for which !!"K ,0!
has meaning as a scattering rate. Comparison of electron and
hole dopings shows that while momentum-space differentia-
tion sets in at about the same absolute value of doping in the
two cases, the degree of differentiation between sectors
"0,"! and "" /2," /2! is greater on the hole-doped side than
on the electron-doped side.

We turn now to a more detailed examination of results
from the 8-site cluster, which is large enough allow a direct
comparison of the nodal and antinodal regions of the Fermi
surface, but is small enough to allow detailed computations
down to relatively low temperatures. The two panels of Fig.
10 show !!"K ,0! and the quasiparticle weight/velocity
renormalization ZK for the nodal K= "" /2," /2! and antin-
odal K= "" ,0! sectors as a function of doping at a relatively
low and a relatively high temperature.

Comparison of the two panels of Fig. 10 shows that the
momentum-space differentiation is marked primarily by a
variation in scattering rate. As doping is reduced, the Fermi-
surface scattering rates increase rapidly and a marked differ-
ence between the two Fermi surface sectors develops with
the antinodal sector K= "" ,0! characterized by a much more
rapidly growing scattering rate. Further, the scattering rates
exhibit a pronounced particle-hole asymmetry. However,
while the inverse mass enhancement/velocity renormaliza-
tion ZK decreases as doping is decreased, the variation with
doping is much less dramatic and, interestingly, there is very
little particle-hole asymmetry or difference between the two
momentum sectors. We also note that the nodal quasiparticle
residue Z""/2,"/2! appears to extrapolate to a nonzero value at
n=1. "A different result was found using self-energy interpo-
lations in superconducting state CDMFT calculations on
4-site clusters.58,59! This is inconsistent with the Brinkman-
Rice theory but qualitatively consistent with data on high-Tc
materials, where photoemission measurements indicate a
zone-diagonal quasiparticle velocity which is only weakly
doping dependent.13 "Very recent measurements indicate that
if the velocity is measured on very low scales, below the
resolution of the numerics in this paper or of previous pho-
toemission data a stronger doping dependence of the velocity
is found.60!

Figure 11 presents the temperature dependence of the
nodal and antinodal scattering rates obtained for the 8-site
cluster for selected densities. To highlight the temperature
dependence we plot !! /T. While the temperature range ac-
cessible to us is too limited to establish any specific form of
temperature dependence it is clear that at the higher doping
isotropic Fermi-liquid regime "n=0.70!, the scattering rates
drop faster than linearly at low T while at the lower doping
"n=0.80; momentum-differentiation regime! the two sectors
have different temperature dependence at low temperature
with the nodal sector scattering rate vanishing more rapidly
than T at low T and the antinodal rate vanishing less rapidly.
At the intermediate doping n=0.75 on the boundary between
the two regimes the behavior is intermediate. These features
are in qualitative agreement with the momentum-space varia-
tion in the electronic mean free path inferred from angular-
dependent magnetoresistance experiments.7,8 For highly
overdoped cuprates these experiments reveal a scattering rate
which is reasonably isotropic around the Fermi surface and
exhibits a relatively conventional temperature dependence.
Below a critical doping a momentum-space differentiation
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2d results: momentum independent behavior for low filling.
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Comparison HTSE / DCA?  
(6th , 8th ,10th order)

HTSE order by order 
convergence: at U=8 correct 
down to T ~ 1.6t (at half 
filling). Worse away from half 
filling.

Agreement of 10th order 
HTSE with DCA down to 
T~1.4t.

See also: in depth analysis of HTSE & DMFT by 
L. De Leo, J.S. Bernier, C. Kollath, A. Georges, V. 
W. Scarola, arXiv: 1009.2761
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How well does single site DMFT work? 
(Single Site, PM self consistency)

First deviations at half filling are visible 
at T ~ 1.6t [ AFM TN at ~0.5t ]

Away from half filling, for n ≤ 0.7: same 
behavior as in 2D; DMFT is exact, no 
momentum dependence of the self 
energy:
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Everywhere else: Non-local (momentum dependent) physics beyond DMFT is important. 
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extrapolation needed.

Low temperature T/t = 0.35: 
Convergence not obvious, critical 
regime with diverging correlation 
length not well captured.
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Everywhere else: Non-local (momentum dependent) physics beyond DMFT is important. 
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Non-trivial momentum 
dependence!
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Failure (?) of the method for larger interactions / lower temperatures
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Monte Carlo errors much 
smaller than symbol size!!
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Double occupancies / deviation from DMFT
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Non-local quantities, e.g. nearest neighbor spin correlation function
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Larger finite size effects.

Interesting physics: steep 
slope means possible 
candidate for 
thermometry; measurable 
in cold atom experiments.
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We have solved the 3D Hubbard model at high temperature! Full tables for the 
entire phase diagram with energies, densities, entropies, double occupancies, and 
spin correlation functions are available online

[ For U ≤ 12t, and T above TN : about 5 
times lower in T than previous methods ]
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We have solved the 3D Hubbard model at high temperature! Full tables for the 
entire phase diagram with energies, densities, entropies, double occupancies, and 
spin correlation functions are available online

[ For U ≤ 12t, and T above TN : about 5 
times lower in T than previous methods ]

HTSE works for high T

In a large range of parameter space 
DCA can be extrapolated reliably

DMFT works well for low filling
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How about 2D?
High temperature series expansion and DMFT available, similar behavior.
Convergence of cluster DMFT spot-checked for some parametersE. Kozik et al.
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Fig. 4: (Color online) Momentum dependence of the self-energy
at the Matsubara frequency ξ = π/β along the cut (0,0) –
(π, 0) – (π,π) – (0, 0) in the first Brillouin zone for the Hubbard
model with the parameters U/t= 4, µ/t= 3.1 and T/t= 0.4.
DiagMC (squares) includes the full momentum dependence,
whereas single-site DMFT (solid lines) is momentum indepen-
dent. The results of DCA calculations are plotted by open
symbols for clusters of size 4, 8, 16, and 32. Note that a
good agreement between DiagMC and DCA is reached with
32-site clusters. The mean-field contribution (the Hartree term
Unσ ≈ 2.3t) was subtracted to magnify fine details. The arrows
indicate the position of the Fermi momentum pF .

Fig. 5: (Color online) Energy density per spin component
Eσ/tV and density nσ (inset) as a function of temperature
for the 3D Hubbard model at U/t= 4 and µ′ = µ−Unσ = 1.5.
DiagMC results are shown by red squares. The HTSE data are
shown by lines: second order in βt (green dashed line), eighth
order (blue dot-dashed line), and tenth order (red dotted line).
At low temperature, the Fermi liquid behavior is fitted to the
DiagMC results (black solid line). The extracted Fermi liquid
parameters are ρ(εF ) = 0.26(4), ρ

′(εF ) =−0.025(2).

Fermi liquid behavior develops only at T < t. Only then
the energy and the density display the characteristic
quadratic dependence on temperature. The fitted values
of the density of single-particle states at the Fermi energy
and its derivative are given in the caption of fig. 5.

The data reported here can serve as established bench-
marks for present experiments on ultracold atoms in opti-
cal lattices and state-of-the-art numeric techniques. This
work constitutes a proof of principle that DiagMC is a reli-
able method for dealing with hard many-body problems.
To map out the phase diagram of the system one will

need to sample diagrams for static response functions and
observe the leading instabilities. In the degenerate Fermi
liquid regime observed here, the development of these
instabilities is controlled by the Fermi liquid theory, which
allows one to reliably predict Tc without actually simu-
lating exponentially low temperatures. Further algorith-
mic progress can be made by using Dyson and/or Bethe-
Salpeter equations to arrive at the self-consistent skele-
ton diagrams description [21], which would allow one to
consider larger interaction strengths and, possibly, reach
the critical points of the model. Going below the critical
point might be possible by introducing anomalous propa-
gators.
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How about 2D?
What can we say about the interesting physics happening at much lower temperature?
Sign problem! Limit to clusters of size ≤16 for surveys of the entire phase space
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Motivation - Pseudogap

in high-Tc materials: Electronic spectral function is suppressed 
along the BZ face, but not along zone diagonal.

No (obvious) long range order.

Key physics dependence on momentum around Fermi surface, 
Difference of spectral function around Fermi surface.

Controversial if contained in Hubbard model without long 
ranged order.

insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.

D x = 0.05

A

x = 0.05(0,0)

(π,π) B

x = 0.10

C

x = 0.12

E x = 0.10 F x = 0.12

R E P O R T S

11 FEBRUARY 2005 VOL 307 SCIENCE www.sciencemag.org902

 o
n 

Se
pt

em
be

r 2
1,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

ARPES: Shen et al., Science 307, 901 (2005)
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the
pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,
sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.
We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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superconducting gap remains temperature independent up
to Tc where no sign is indicating that it is closing. Across
Tc, the superconducting tunneling spectra evolve continu-
ously into a normal state quasiparticle gap structure, which
we refer to as a pseudogap. It is clear from Fig. 2 that
this pseudogap also does not change much with tempera-
ture and that it is even possibly there at room temperature.
The pseudogap structure just gets weaker with increasing
temperature. This is in striking contrast to photoemission
data which for a sample with the same doping level led to
the conclusion that the gap reduced to zero at T � � 170 K
[11]. We believe the T � observed in various experiments
is to be considered as a characteristic energy scale and not
as a temperature where the pseudogap is reduced to zero.
At first sight it is not clear from these data where the critical
temperature is located. A closer inspection of the spectra
shows that the peak at negative energy and the dip at about
22Dp disappear at Tc. The positive bias peak on the mea-
sured spectra does not vanish at Tc, but remains finite and
shifts to higher energies above Tc [Fig. 3(b)]. The DOS at
the Fermi level bears no particular signature of the super-
conducting transition in this set of data. Indeed, the DOS
below the gap starts to be depleted already at room tem-
perature and gradually hollows in to reach its minimum at
4.2 K. This low bias temperature dependence is better seen
in Fig. 3(a), which is a three dimensional plot of the tunnel-
ing conductance as a function of energy and temperature of
the 83 K underdoped Bi2212. The same data are displayed
as a gray scale projection onto the energy-temperature
plane in Fig. 3(b), where white corresponds to high con-
ductivity �1.5 GV21� and black to zero conductivity.

So far most measurements report the existence of a
pseudogap in underdoped samples. Our measurements

FIG. 2. Tunneling spectra measured as a function of tem-
perature on underdoped Bi2212. The conductance scale cor-
responds to the 293 K spectrum, the other spectra are offset
vertically for clarity.

show that the pseudogap is present above Tc both at
optimum doping and in overdoped samples. In Fig. 4 we
show a set of spectra for the overdoped sample with a Tc of
74.3 K. We see that the behavior is precisely the same as
for the underdoped case discussed above. The gap value
stays temperature independent and the peak at negative
energy as well as the dip at about 22Dp disappear at Tc,
but the region below the gap evolves smoothly across Tc
into the pseudogap. The difference with the underdoped
case is that the gap and pseudogap are smaller, and the
amplitude of the pseudogap structure seems to disappear
more quickly as the temperature is increased. The fact
that the pseudogap scales with the superconducting gap
and that it is smaller in the overdoped samples than in the
underdoped ones indeed demonstrates that the pseudogap
in Fig. 4 is a property of the overdoped crystal, and not
that of an underdoped surface resulting from partial loss
of oxygen at high temperature. The two curves shown on
top of the 69 K spectrum in Fig. 4 illustrate the temperature
independence of the gap. Simply thermally smearing the
4.2 K spectrum to 69 K (dashed curve, D69 K � D4.2 K)
reproduces much better the position of the conductance
peaks at 69 K than thermally smearing the 4.2 K spectrum
to 69 K assuming a reduced gap (dotted curve, D69 K �
0.8D4.2 K). The numerical spectra show that there are
more low energy states measured than predicted by simply
thermally smearing the data. However, this feature is
beyond the scope of this Letter. We have also carried
out similar analysis for the 83 K underdoped sample with
basically the same conclusions.

Several theoretical studies have considered the possibil-
ity of the presence of superconducting phase fluctuations

FIG. 3. (a) Three dimensional view of the conductance data
shown in Fig. 2. The highlighted curve is the spectrum
measured at Tc . (b) Projection onto the energy-temperature
plane. The line at positive bias indicates the position of the
positive bias conductance peak which clearly shifts to higher
energies above Tc.
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(Bi2212, Y123, Tl2201 and Hg1201). The datapoints were obtained, as a function of hole doping x, by angle-resolved photoemission
spectroscopy (ARPES), tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS) and heat conductivity (HC).
On the same plot we are also including the energy "r of the magnetic resonance mode measured by inelastic neutron scattering (INS),
which we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal curves
given by Epg = Emax

pg (0.27 − x)/0.22 and Esc = Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg = Epg(x =0.05) = 152 ± 8 meV and
Emax

sc = Esc(x = 0.16) = 42 ± 2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all available
data would be more appropriately described by ±20 and ±10 meV, respectively).

show that one fundamental and robust conclusion can be
drawn: the HTSC phase diagram is dominated by two energy
scales, the superconducting transition temperature Tc and the
pseudogap crossover temperature T ∗, which converge to the
very same critical point at the end of the superconducting dome.
Establishing whether this phenomenology can be conclusively
described in terms of a coexisting two-gap scenario, and
what the precise nature of the gaps would be, will require a
more definite understanding of the quantities measured by the
various probes.

2. Emerging phenomenology

The literature on the HTSC superconducting gap and/or
pseudogap is very extensive and still growing. In this situation
it seems interesting to go over the largest number of data
obtained from as many experimental techniques as possible,
and look for any possible systematic behavior that could be
identified. This is the primary goal of this focused review. We
want to emphasize right from the start that we are not aiming
at providing exact quantitative estimates of superconducting
and pseudogap energy scales for any specific compound or
any given doping. Rather, we want to identify the general
phenomenological picture emerging from the whole body of
available experimental data [5, 9, 13, 16, 18, 34–72].

We consider some of the most direct probes of low-
energy, electronic excitations and spectral gaps, such as
angle-resolved photoemission (ARPES), scanning-tunneling
microscopy (STM), superconductor/insulator/normal-metal

(SIN) and superconductor/insulator/superconductor (SIS)
tunneling, Andreev reflection tunneling (AR) and Raman
scattering (RS), as well as less conventional probes such as
heat conductivity (HC) and inelastic neutron scattering (INS).
The emphasis in this review is on spectroscopic data because
of their more direct interpretative significance; however,
these will be checked against thermodynamic/transport data
whenever possible. With respect to the spectroscopic data, it is
important to differentiate between single-particle probes such
as ARPES and STM, which directly measure the one-electron
excitation energy ! with respect to the chemical potential (on
both side of EF in STM), and two-particle probes such as
Raman and inelastic neutron scattering, which instead provide
information on the particle-hole excitation energy 2!. Note
that the values reported here are those for the ‘full gap’ 2!
(associated with either Esc or Epg), while frequently only half
the gap ! is given for instance in the ARPES literature. In
doing so one implicitly assumes that the chemical potential lies
half-way between the lowest-energy single-electron removal
and addition states; this might not necessarily be correct but
appears to be supported by the direct comparison between
ARPES and STM/Raman results. A more detailed discussion
of the quantities measured by the different experiments and
their interpretation is provided in the following subsections.
Here we would like to point out that studies of B2g and
B1g Raman intensity [19, 40, 52], heat conductivity of nodal
quasiparticles [70,71] and neutron magnetic resonance energy
"r [42] do show remarkable agreement with superconducting
or pseudogap energy scales as inferred by single-particle
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instead of only one as expected from a standard d-wave gap.
We find a strong momentum dependence of the quasiparticle
spectral weight (QPSW) in the superconducting state of the
underdoped regime, and we finally establish, using a new Raman
sum rule, a relationship between the superfluid density and
the low-energy Raman scattering associated with nodal physics,
suggesting that the Fermi-liquid renormalization of the current
and Raman tensor (which transforms as a product of currents)
have similar doping dependence. Our new experimental results
place strong constraints on theories of the high-temperature
superconductivity phenomenon.

EXPERIMENTAL RESULTS

Figure 1 shows the NR and ANR Raman responses in both
the normal and superconducting states of the Hg-1201 single
crystals, at various doping levels. At optimal doping (Tc = 95 K),
the electronic Raman continua for both the NR and ANR
exhibit a redistribution of spectral weight from energies lower
than 400 cm−1 to higher energy, when going from the normal
to the superconducting state. At low energy (below 400 cm−1),
the ANR superconducting continuum exhibits a cubic frequency
dependence with a well-marked superconducting pair-breaking
peak, at a frequency ωAN " 505 cm−1 (" 8kBTc, where kB is the
Boltzmann constant). In contrast, the superconducting spectrum
in the NR has a linear frequency dependence up to 400 cm−1, as
well as a weaker signature of the pair-breaking peak close to the
same frequency ωN " ωAN that for the ANR spectrum.

The Raman response at optimal doping is thus characterized by
a single energy scale ωAN " ωN associated with the pair-breaking
peak, and all the features described above are consistent with those
expected for a d-wave superconductor2 with a maximum value ∆m

of the superconducting gap given by 2∆m = ωAN. Our results for
one overdoped sample (spectra at the top of Fig. 1) can also be
interpreted in terms of a single energy scale.

In contrast, as doping is decreased below the optimal level,
the evolution of the Raman spectra in the superconducting phase
becomes strikingly different in the ANR and in the NR. As the
doping level (and Tc) is reduced, the energy of the antinodal peak
(indicated by an arrow on the right panel of Fig. 1) increases.
Simultaneously, the intensity of this peak rapidly decreases as Tc

decreases, and finally disappears in the vicinity of Tc =78 K. On the
contrary, the nodal peak persists down to the lowest doping that
we have studied (Tc = 63 K), and its energy follows Tc. We note
that similar observations have been reported previously for other
cuprates, such as Y-123, Bi-2212, Bi2Sr2−xLaxCuO6+δ (Bi-2201) and
La2−xSrxCuO4 (LSCO)3–5. This demonstrates that the electronic
Raman response in the underdoped regime involves two distinct
energy scales, with opposite doping dependences. As discussed
below, this is inconsistent with a simple BCS d-wave description2.

To further substantiate this point, in Fig. 2 we have plotted
the characteristic ratios ωAN/Tmax

c and ωN/Tmax
c obtained for

several families of cuprates by different groups3–5, as a function
of doping at a fixed temperature well below Tc (Tmax

c is Tc at
optimal doping). The doping value p is inferred from Tc using
Tallon’s equation6: 1−Tc/Tmax

c = 82.6 (p−0.16)2. Figure 2 reveals
that these ratios have a universal dependence on doping. For
underdoped compounds, two distinct scales are present, clearly
separated beyond the scatter of the data, with the two ratios
behaving in opposing ways as a function of doping, whereas a
unique energy scale (and doping dependence) is recovered in the
optimally doped and overdoped regime.

We do not address the more subtle effects here, such as the
possible downwards shift of the higher-energy scale in Raman
measurements, due to collective modes7.
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INCONSISTENCY WITH A SIMPLE BCS MODEL

Let us now analyse these results using the simplest possible
framework, that of a BCS superconductor with a d-wave gap
function of the form ∆k = ∆m cos(2φ) (φ is the angle associated
with momentum k on the Fermi-surface). The Raman response
would then read2,8:

χ′′
AN,N(ω) = 2πNF

ω
Re

〈
(γAN,N

k (φ))2∆2
m cos2(2φ)

√
ω2 −4∆2

m cos2(2φ)

〉

FS

(1)

where NF is the density of states at the Fermi level, γAN,N(φ)
is the Raman vertex associated with each polarization:
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instead of only one as expected from a standard d-wave gap.
We find a strong momentum dependence of the quasiparticle
spectral weight (QPSW) in the superconducting state of the
underdoped regime, and we finally establish, using a new Raman
sum rule, a relationship between the superfluid density and
the low-energy Raman scattering associated with nodal physics,
suggesting that the Fermi-liquid renormalization of the current
and Raman tensor (which transforms as a product of currents)
have similar doping dependence. Our new experimental results
place strong constraints on theories of the high-temperature
superconductivity phenomenon.

EXPERIMENTAL RESULTS

Figure 1 shows the NR and ANR Raman responses in both
the normal and superconducting states of the Hg-1201 single
crystals, at various doping levels. At optimal doping (Tc = 95 K),
the electronic Raman continua for both the NR and ANR
exhibit a redistribution of spectral weight from energies lower
than 400 cm−1 to higher energy, when going from the normal
to the superconducting state. At low energy (below 400 cm−1),
the ANR superconducting continuum exhibits a cubic frequency
dependence with a well-marked superconducting pair-breaking
peak, at a frequency ωAN " 505 cm−1 (" 8kBTc, where kB is the
Boltzmann constant). In contrast, the superconducting spectrum
in the NR has a linear frequency dependence up to 400 cm−1, as
well as a weaker signature of the pair-breaking peak close to the
same frequency ωN " ωAN that for the ANR spectrum.

The Raman response at optimal doping is thus characterized by
a single energy scale ωAN " ωN associated with the pair-breaking
peak, and all the features described above are consistent with those
expected for a d-wave superconductor2 with a maximum value ∆m

of the superconducting gap given by 2∆m = ωAN. Our results for
one overdoped sample (spectra at the top of Fig. 1) can also be
interpreted in terms of a single energy scale.

In contrast, as doping is decreased below the optimal level,
the evolution of the Raman spectra in the superconducting phase
becomes strikingly different in the ANR and in the NR. As the
doping level (and Tc) is reduced, the energy of the antinodal peak
(indicated by an arrow on the right panel of Fig. 1) increases.
Simultaneously, the intensity of this peak rapidly decreases as Tc

decreases, and finally disappears in the vicinity of Tc =78 K. On the
contrary, the nodal peak persists down to the lowest doping that
we have studied (Tc = 63 K), and its energy follows Tc. We note
that similar observations have been reported previously for other
cuprates, such as Y-123, Bi-2212, Bi2Sr2−xLaxCuO6+δ (Bi-2201) and
La2−xSrxCuO4 (LSCO)3–5. This demonstrates that the electronic
Raman response in the underdoped regime involves two distinct
energy scales, with opposite doping dependences. As discussed
below, this is inconsistent with a simple BCS d-wave description2.

To further substantiate this point, in Fig. 2 we have plotted
the characteristic ratios ωAN/Tmax

c and ωN/Tmax
c obtained for

several families of cuprates by different groups3–5, as a function
of doping at a fixed temperature well below Tc (Tmax

c is Tc at
optimal doping). The doping value p is inferred from Tc using
Tallon’s equation6: 1−Tc/Tmax

c = 82.6 (p−0.16)2. Figure 2 reveals
that these ratios have a universal dependence on doping. For
underdoped compounds, two distinct scales are present, clearly
separated beyond the scatter of the data, with the two ratios
behaving in opposing ways as a function of doping, whereas a
unique energy scale (and doping dependence) is recovered in the
optimally doped and overdoped regime.

We do not address the more subtle effects here, such as the
possible downwards shift of the higher-energy scale in Raman
measurements, due to collective modes7.
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Opt.: optimally doped; Und.: underdoped.

INCONSISTENCY WITH A SIMPLE BCS MODEL

Let us now analyse these results using the simplest possible
framework, that of a BCS superconductor with a d-wave gap
function of the form ∆k = ∆m cos(2φ) (φ is the angle associated
with momentum k on the Fermi-surface). The Raman response
would then read2,8:

χ′′
AN,N(ω) = 2πNF

ω
Re

〈
(γAN,N

k (φ))2∆2
m cos2(2φ)

√
ω2 −4∆2

m cos2(2φ)

〉

FS

(1)

where NF is the density of states at the Fermi level, γAN,N(φ)
is the Raman vertex associated with each polarization:
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.
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Study on five cluster geometries shows same features:

• Isotropic Fermi Liquid for large doping, as in 3D

• Momentum space differentiated Fermi liquid regime

• Sector Selective Phase (absent on el-doped side for large t’)

• Mott Insulator
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Results: Sector Selective Regime

Sector selectivity:

•Some momentum sectors become 
insulating, while others stay metallic.

•Region around (π,0) insulating, 
quasiparticles in (π/2,π/2) region.
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ings larger than x=0.11, a gap is not visible at the tempera-
tures T! t /20 accessible to us although a weak feature in the
x=0.13 curve suggests that the gap is still present. However,
certainly at x=0.11 and perhaps at x=0.13 the gap magnitude
!as defined by the peak-to-peak distance in the spectral func-
tion" is not small. We therefore suspect that at least a reduc-
tion in density of states would be observed at higher dopings
if we were able to perform the calculations at lower tempera-
tures.

The lower panel of Fig. 3 shows the !" /2," /2"-sector
spectral function at the same dopings. At the smallest doping,
a weak suppression of low-frequency density of states is evi-
dent but for most dopings this sector remains ungapped.

IV. INTERPLANE CONDUCTIVITY

An important early indication of the presence of a charge
pseudogap was provided by measurements of the frequency
dependence of the interplane conductivity.6 As can be seen
from Eq. !5", in high-Tc materials the matrix elements rel-
evant to the interplane conductivity highlight the zone-face
regions where the electron spectral function exhibits a gap
!see upper panel in Fig. 3".

Figure 4 shows the calculated temperature and doping de-
pendence of the interplane conductivity. The pseudogap is
visible as a temperature- and doping-dependent suppression
of the low-frequency interplane conductivity. The interplane
conductivity is suppressed over a relatively wide frequency
range; the suppression increases as the doping or temperature
decreases, and the gap fills in but does not close as tempera-
ture is increased. The calculations also reveal a weak maxi-
mum in the conductivity at an energy just above the
pseudogap. A somewhat broader version of this feature was
observed by Yu et al.59 It is possible that the relative sharp-
ness of the feature is an artifact related to our coarse graining
of momentum space, which might arise because the DCA
approximation necessarily produces a gap that is piecewise
continuous; and as is known from the familiar case of s-wave
BCS superconductivity a momentum-independent gap pro-
duces a peak. The results are reasonably consistent with
experiment.6,7,12,59 Reference 59 reports a high-energy
pseudogap of a magnitude consistent with what is found
here. It is important to note that in the widely studied
YBa2Cu3O6+x material, the interplay of strong local-field ef-
fects !arising from the bilayer structure" and phonon effects
produce complicated structures in the low-frequency conduc-
tivity which are not represented in the present
calculation.59–61

Conductivities may be characterized by “spectral weight,”
the integrated area in some frequency range. The total spec-
tral weight obeys an “f-sum” rule, which for the model stud-
ied here is
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Results: Doping Transition
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insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.

B

4a

24 mV 

q = 2π / 4a
ω = 0 meV

-50

C antinodal

-0.25 0.250
Wavevector (π/a, kπ/a)

D nodal

ω = 0 meV

0.3 0.4 0.5
k (π/a,π/a)

-80 meV

1.0

0 0.05 0.10
0.0

R
el

at
iv

e 
W

av
ev

ec
to

r 
(k

)

antinodal kF

(π, kπ/a)

nodal kF

(kπ/a, kπ/a)

E

Doping (x)

k = π /4a0

Γ

(π,π)A

q = 2π/4a

θ

0o

+45o

-45o

Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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Results: Pseudogap Phase

Sector selective transition is robust (for all 
clusters large enough to have nodal antinodal 
differentiation), is the cluster DMFT 
representation of  pseudogap physics.

insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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quency, is clearly visible for x!0.11, while for x=0.13 and
0.16 there is no pole, only a weak modulation indicating a
non-Fermi-liquid scattering rate. Whether this modulation
would evolve into a pole as T→0 is an interesting open
question. Liebsch et al.44 analyzed the self-energy pole struc-
ture in the !0,"" sector of a four-site cellular dynamical
mean-field !C-DMFT" calculation, finding a similar doping
dependence of the pole strength. They reported a strong de-
pendence of the pole position on doping; this variation is not
found in the eight-site cluster studied here.

An alternative characterization of electronic behavior is

the quasiparticle residue Z= #1−$ ! Re #!$"
!$ $$=0%−1. Because

within each sector, the self-energy is momentum indepen-
dent, Z gives the renormalization of the Fermi velocity as

v!=Zv. This renormalization has physical significance if the
self-energy is Fermi-liquidlike, meaning that the imaginary
part is not too large and the real part is linear in frequency
over a reasonable range about $=0. We determine the
boundaries of the Fermi-liquid regime by first observing that
the real part of the self-energy Re # is linear in frequency
over the range −$L!$!$H !see Appendix A, Fig. 16", and
then comparing the magnitude of the imaginary part of
the self-energy at zero frequency to the change of $
− #Re #!$"−Re #!0"% over the linear range. If the change
#$H−Re #!$H"%− #$L−Re #!$L"% is larger than −2 Im #!$
=0" we identify the regime as Fermi-liquidlike. For an illus-
tration of the determination of Fermi-liquid behavior, see
Appendix A.

This condition is reasonably well satisfied for sector B for
dopings x%0.08 !and marginally satisfied for x=0.08". Simi-
larly sector C is found to be Fermi-liquidlike for dopings x
=0.18 and greater but for x=0.06, the self-energy in both
sectors is far from Fermi-liquidlike and the quantity Z cannot
be interpreted as a “quasiparticle weight.”

The solid points in the upper panel of Fig. 14 show the
value of Z for the sector B containing the zone-diagonal
point !" /2," /2" and the sector C containing the zone-face
point !0,"" for dopings for which the sectors are Fermi-
liquidlike. The open symbols show the mathematically de-
fined values of Z in the regime where it has no physical
meaning because the regime is not Fermi-liquidlike. For dop-
ings in the Fermi-liquid regime, the Z in sector B is linear in
x but extrapolates to a small nonzero value at x=0. This is
approximately but not exactly the behavior Z&x expected in
a doped Mott insulator. The lower panel of Fig. 14 shows
that the doping dependence of the low-frequency optical
conductivity weight is essentially the same as that of the
nodal-sector Z.

VIII. SUMMARY

In the eight-site DCA approximation to the solution of the
two-dimensional Hubbard model, the doping-driven Mott
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FIG. 14. !Color online" Upper panel: doping dependence of the
quasiparticle residue Z calculated for sector B containing the
!" /2," /2" point and sector C containing the !0,"" point from
analytically continued self-energies at inverse temperature &=20 / t
'200 K. The filled symbols represent dopings x'0.08 for sector
B and x'0.18 for sector C where the self-energy is Fermi-
liquidlike as defined in the text. Open symbols are mathematically
defined from our data but we believe are not physically meaningful
because the scattering rate is too large. Lower panel: approximate
proportionality of optical spectral weight and Z. Triangles !black":
integral from 0 to $=2t of calculated optical conductivities, divided
by renormalization factor Z of sector B, plotted against doping x.
Squares !red": integral from 0 to $=2t of sector B contribution to
conductivity, divided by renormalization factor Z of sector B and
plotted against doping.
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Figure 2. Pseudogap (Epg = 2!pg) and superconducting (Esc ∼ 5kBTc) energy scales for a number of HTSCs with T max
c ∼ 95 K

(Bi2212, Y123, Tl2201 and Hg1201). The datapoints were obtained, as a function of hole doping x, by angle-resolved photoemission
spectroscopy (ARPES), tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS) and heat conductivity (HC).
On the same plot we are also including the energy "r of the magnetic resonance mode measured by inelastic neutron scattering (INS),
which we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal curves
given by Epg = Emax

pg (0.27 − x)/0.22 and Esc = Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg = Epg(x =0.05) = 152 ± 8 meV and
Emax

sc = Esc(x = 0.16) = 42 ± 2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all available
data would be more appropriately described by ±20 and ±10 meV, respectively).

show that one fundamental and robust conclusion can be
drawn: the HTSC phase diagram is dominated by two energy
scales, the superconducting transition temperature Tc and the
pseudogap crossover temperature T ∗, which converge to the
very same critical point at the end of the superconducting dome.
Establishing whether this phenomenology can be conclusively
described in terms of a coexisting two-gap scenario, and
what the precise nature of the gaps would be, will require a
more definite understanding of the quantities measured by the
various probes.

2. Emerging phenomenology

The literature on the HTSC superconducting gap and/or
pseudogap is very extensive and still growing. In this situation
it seems interesting to go over the largest number of data
obtained from as many experimental techniques as possible,
and look for any possible systematic behavior that could be
identified. This is the primary goal of this focused review. We
want to emphasize right from the start that we are not aiming
at providing exact quantitative estimates of superconducting
and pseudogap energy scales for any specific compound or
any given doping. Rather, we want to identify the general
phenomenological picture emerging from the whole body of
available experimental data [5, 9, 13, 16, 18, 34–72].

We consider some of the most direct probes of low-
energy, electronic excitations and spectral gaps, such as
angle-resolved photoemission (ARPES), scanning-tunneling
microscopy (STM), superconductor/insulator/normal-metal

(SIN) and superconductor/insulator/superconductor (SIS)
tunneling, Andreev reflection tunneling (AR) and Raman
scattering (RS), as well as less conventional probes such as
heat conductivity (HC) and inelastic neutron scattering (INS).
The emphasis in this review is on spectroscopic data because
of their more direct interpretative significance; however,
these will be checked against thermodynamic/transport data
whenever possible. With respect to the spectroscopic data, it is
important to differentiate between single-particle probes such
as ARPES and STM, which directly measure the one-electron
excitation energy ! with respect to the chemical potential (on
both side of EF in STM), and two-particle probes such as
Raman and inelastic neutron scattering, which instead provide
information on the particle-hole excitation energy 2!. Note
that the values reported here are those for the ‘full gap’ 2!
(associated with either Esc or Epg), while frequently only half
the gap ! is given for instance in the ARPES literature. In
doing so one implicitly assumes that the chemical potential lies
half-way between the lowest-energy single-electron removal
and addition states; this might not necessarily be correct but
appears to be supported by the direct comparison between
ARPES and STM/Raman results. A more detailed discussion
of the quantities measured by the different experiments and
their interpretation is provided in the following subsections.
Here we would like to point out that studies of B2g and
B1g Raman intensity [19, 40, 52], heat conductivity of nodal
quasiparticles [70,71] and neutron magnetic resonance energy
"r [42] do show remarkable agreement with superconducting
or pseudogap energy scales as inferred by single-particle
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Pseudogap Size

Remarkable agreement with other experimental probes: c-axis, in-plane optical 
conductivity, Raman. 

The pseudogap is a feature of the Hubbard model at intermediate correlation 
strength. No long range order is required to obtain a pseudogap.
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Large Cluster DMFT – Conclusions
We can do large interacting systems (100 sites and more), at and away from half filling

To obtain converged results all sources of errors need be addressed:

• Monte Carlo errors

• Finite size errors

• In methods that have them: further internal systematic errors like Trotter errors or 
bath discretization errors

In 3D: Exact results for temperatures five times lower

In 2D: Features in phase diagram established as robust, clear which regimes are 
converged and which are not.

Progress made possible by advances in numerical methods: CT-AUX and sub-matrix 
updates.
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