

Numerical Simulations of Quenches in Bose Hubbard models

Andreas Läuchli, "New states of quantum matter" MPI für Physik komplexer Systeme - Dresden

http://www.pks.mpg.de/~aml

C. Kollath, AML, E. Altman, PRL 2007 AML and C. Kollath, JSTAT 2008 G. Biroli, C. Kollath, and AML, arXiv:0907.3731

A chain of harmonic oscillators, coupled with nonlinear couplings

A nonintegrable system, should thus approach thermal equilibrium

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrabl
- One of the first
- Big surprise: T

Fig. 1. – The quantity plotted is the energy (kinetic plus potential in each of the first five modes). The units for energy are arbitrary. N = 32; $\alpha = 1/4$; $\delta t^2 = 1/8$. The initial form of the string was a single sine wave. The higher modes never exceeded in energy 20 of our units. About 30,000 computation cycles were calculated.

um

ntegrability

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

- Big surprise: The system does not thermalize, despite the nonintegrability
- Seminal work leading KAM Theory etc, ...

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

- Seminal work leading KAM Theory etc, ...
- Quantum world?

Quantum World: Two experimental examples

Collapse and Revival of a superfluid

Quantum Newton's craddle

Greiner et al, Nature 2002

Kinoshita et al, Nature 2006

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
 - Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
 - Properties of steady state ?
 - Is the steady state already "thermal"?

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
 - Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
 - Properties of steady state ?
 - Is the steady state already "thermal"?

Optical lattices and Hamiltonian

Greiner and Fölling, Nature 2008

Bosonic atoms: tunneling between wells and interaction within the same well:

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + h.c.) + \frac{U}{2}\sum_i n_i(n_i - 1)$$

Bose-Hubbard model

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

 Transition from Superfluid at large J/U to Mott Insulator at small J/U (Integer filling)

Superfluid versus Mott-Insulator

Quantum states of bosons and their fingerprint in "time-of-flight" images

$$\langle b_i^{\dagger} b_j \rangle \longrightarrow \langle b_i^{\dagger} \rangle \langle b_j \rangle$$

$$\langle b_i^{\dagger} b_j \rangle \to 0$$

Quench from the Superfluid to Mott Insulator

Quench from the Superfluid to Mott Insulator

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Quench from the Superfluid to Mott Insulator

Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

Time dependence of time-of-flight images:

Collapse and Revival! Suppressed at longer times.

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + h.c.) + \frac{U}{2}\sum_i n_i(n_i - 1)$$

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + h.c.) + \frac{U}{2}\sum_i n_i(n_i - 1)$$

Linear chain (up to L=64) / occasionally square lattice

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

- Linear chain (up to L=64) / occasionally square lattice
- J is kept constant (J=1)

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

- Linear chain (up to L=64) / occasionally square lattice
- J is kept constant (J=1)
- ullet Preparation in ground state at $U_{initial}$, typically in the superfluid ($U_{initial} < U_{crit} = 3.37$)

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

- Linear chain (up to L=64) / occasionally square lattice
- J is kept constant (J=1)
- Preparation in ground state at U_{initial}, typically in the superfluid (U_{initial} < U_{crit}=3.37)
- Time evolution of this state using new Hamiltonian at Ufinal

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + h.c.) + \frac{U}{2}\sum_i n_i(n_i - 1)$$

- Linear chain (up to L=64) / occasionally square lattice
- J is kept constant (J=1)
- Preparation in ground state at Uinitial, typically in the superfluid (Uinitial < Ucrit=3.37)</p>
- Time evolution of this state using new Hamiltonian at Ufinal
- Time evolution is performed numerically using Exact Diagonalization and t-DMRG

Exact Diagonalization Real-Time Dynamics

- ullet It is expensive to obtain the full propagator $\exp[-itH]$
- Krylov methods exist to approximate the propagator for a given state $|\psi(0)\rangle$ One can get the time propagated state $|\psi(t)\rangle$ with only $|v\rangle=H|v\rangle$ operations.

$$|\phi'\rangle = |H|\phi_{n}\rangle - \beta_{n}|\phi_{n-1}\rangle,$$

$$\alpha_{n} = \langle \phi_{n}|\phi'\rangle,$$

$$|\phi''\rangle = |\phi'\rangle - \alpha_{n}|\phi_{n}\rangle,$$

$$\beta_{n+1} = ||\phi''|| = \sqrt{\langle \phi''|\phi''\rangle},$$

$$|\phi_{n+1}\rangle = |\phi''\rangle/\beta_{n+1},$$

$$\tilde{H}_{N} = \begin{bmatrix} \alpha_{0} & \beta_{1} & 0 & \cdots & 0 \\ \beta_{1} & \alpha_{1} & \beta_{2} & 0 & \cdots & 0 \\ 0 & \beta_{2} & \alpha_{2} & \beta_{3} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \beta_{N-2} & \alpha_{N-2} & \beta_{N-1} \\ 0 & \cdots & 0 & \beta_{N-1} & \alpha_{N-1} \end{bmatrix}$$

Calculate matrix exponential of H_N, instead of the full Hamiltonian

Park & Light, J. Chem. Phys 1986

Time evolution of quantum systems with up to 10⁸ degrees of freedom (dim H)

Numerical Methods: tDMRG

- t-DMRG (large systems L=100++, but relatively short times)
 - Adaptive control of the optimal Hilbert space as time evolves.

Maximum time depends on entanglement growth.

G. Vidal PRL '03 A. Daley et al., JSTAT '04 S. White & A. Feiguin, PRL '04

- More refined approaches can reach larger times (however still require exponential resources):
 - Light-cone MPS
 - Heisenberg picture

M. Hastings, J. Math. Phys. 2009 M.C. Bañuls, et al., PRL 2009 M.C. Bañuls, et al., arXiv:1007:3957

M. Hartmann et al., PRL 2009

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
 - Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
 - Properties of steady state ?
 - Is the steady state already "thermal"?

Superfluid correlation

Pronounced collapse and steady state at later times $\overset{\sim}{\nabla}$

Collapse and revival controlled by U

Relaxation faster for larger bandwidth (1D/2D)

More distant sites see correlation signal pass at later times. Linear relation.

Lightcone / Horizon effect

More distant sites see correlation signal pass at later times. Linear relation.

AML and Kollath, JSTAT '08

von Neumann Entanglement Entropy (first static)

- Saturation of vN EE in gapped phase
- Logarithmic divergence in critical phase (single component c=1)

$$S_A = \operatorname{Tr}_A[-\rho_A \log \rho_A]$$

 Entropy increase upon system doubling reveals the phase transition quite accurately.

ullet von Neumann entropy of a block A consisting of I sites $S_A = {
m Tr}_A [ho_A \log
ho_A]$

PBC A

ullet von Neumann entropy of a block A consisting of I sites $S_A = {
m Tr}_A [ho_A \log
ho_A]$

ullet von Neumann entropy of a block A consisting of I sites $S_A = {
m Tr}_A [ho_A \log
ho_A]$

Linear growth in time first, then saturation to value proportional to I

Calabrese and Cardy, JSTAT '05 G. De Chiara et al., JSTAT '06

Related systems: Barmettler et al., PRA 2008, Manmana et al. PRB 2009

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
 - Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
 - Properties of steady state ?
 - Is the steady state already "thermal"?

Relaxation

Properties of the steady state after the relaxation

Relaxation

Properties of the steady state after the relaxation

Weak Quench: Looks "thermal"

Weak Quench: Looks "thermal"

Deep Quench: non-thermal / memory effect?

Deep Quench: non-thermal / memory effect?

Quench depth dependence

Back to the roots

• At t>0 $|\psi(t)\rangle=e^{-iHt}|\psi_0\rangle$, and long time averages are given by:

$$\langle \mathcal{O} \rangle_{\infty} = \frac{1}{T} \int_{0}^{T} dt \langle \psi(t) | \mathcal{O} | \psi(t) \rangle = \frac{1}{T} \int_{0}^{T} dt \sum_{\alpha,\beta} c_{\alpha} c_{\beta}^{*} e^{-it(E_{\alpha} - E_{\beta})} \langle \beta | \mathcal{O} | \alpha \rangle$$

$$\langle \mathcal{O} \rangle_{\infty} = \sum_{\alpha} |c_{\alpha}|^{2} \langle \alpha | \mathcal{O} | \alpha \rangle = Tr[\rho_{D} \mathcal{O}]$$

$$c_{\alpha} = \langle \alpha | \psi_{0} \rangle$$

$$\rho_{D} = \sum_{\alpha} |c_{\alpha}|^{2} |\alpha \rangle \langle \alpha |$$

$$\sum_{\alpha} |c_{\alpha}|^{2} \langle \alpha | \mathcal{O} | \alpha \rangle = \langle \mathcal{O} \rangle_{E,N}$$

$$\stackrel{\alpha}{\text{dependent}} \quad \text{independent}$$

$$\text{on the initial state}$$

Eigenstate thermalization hypothesis (ETH)

Deutsch (91), Srednicki (94)

The expectation value $\langle \alpha | \mathcal{O} | \alpha \rangle$ of a few body observable in an eigenstate $|\alpha\rangle$ of a large interacting many body system equals the thermal micro-canonical average at the intensive energy E_{α}/N .

Rigol, Dunjiko, Olshanii, Nature 2008

In the diagonal ensemble the intensive energy does not fluctuate and is equal (by definition) to the micro-canonical one

$$\left(\sum (E_{\alpha}/N)^{2}|c_{\alpha}|^{2} - \left(\sum (E_{\alpha}/N)|c_{\alpha}|^{2}\right)^{2} \to 0 \quad for \quad N \to \infty\right)$$

Thermalization:

$$\sum_{\alpha} |c_{\alpha}|^{2} \langle \alpha | \mathcal{O} | \alpha \rangle = \sum_{\alpha} |c_{\alpha}|^{2} \langle O \rangle_{E_{\alpha}, N} = \langle O \rangle_{E, N}$$

Quench: Overlap with Uf eigenbasis

Extensive amount of energy pumped into the system through the quench

$$f(\omega) = \sum_{\alpha} |c_{\alpha}|^2 \times \delta(N\omega - E_{\alpha})$$

$$(a) \text{ 1D Chain, } U_1 = 2 \text{ J, } U_2 = 80 \text{ J}$$

$$- N_{\text{sites}} = 10$$

$$- N_{\text{sites}} = 12$$

$$- N_{\text{sites}} = 14$$

$$- N_{\text{sites}} = 16$$

$$- N_{\text{sites}} = 10$$

Quench: Cumulants of overlaps

Cumulants of Quench distribution: low cumulants approach Gaussian

values (as in CLT)

 $f(\omega) = \sum |c_{\alpha}|^2 \times \delta(N\omega - E_{\alpha})$ Finite size scaling of the cumulants of h=H/N Quench from U_i=2 J to U_f=80 J Skewness, Chain Standard Deviation) $N^{-1/2}$ 0.2 o o o co s s resp. Kurtosis) Kurtosis, Chain 0.1 2.5 -0.1Ln (Mean resp. 2 <h>, Square Lattice - <h>, Chain → σ, Square Lattice 🗕 🗸 σ, Chain -0.42.4 2.5 2.6 2.7 2.8 2.4 2.5 2.6 2.7 2.3 Ln(N or L) Ln(N or L)

see also S. Manmana et al., PRL 2007; M. Rigol et al., Nature 2008

What do very high moments do? Does some structure survive?

ETH: G₁ of eigenstates at U/J=1

at small U rare states seem to absent already for small system sizes.

$$(\mathcal{G}_1)_{\alpha} = \langle \alpha | b_j^{\dagger} b_{j+1} | \alpha \rangle$$

ETH ?: G₁ of eigenstates at U/J=10

 $(\mathcal{G}_1)_{\alpha} = \langle \alpha | b_j^{\dagger} b_{j+1} | \alpha \rangle$ Full diagonalization results for small systems 150 $E/J_1L (U_i/J_1=2), L=11$ 0.5 D, $U_i/J_1=2$, L=11 00 Histogram Long time average L=8 L=10 -0.5 -0.3 20 0.3 30 10 $E_{\alpha}/J_{1}L$ L=11 L = 10-0.2 0.6 -0.4 0.2 0.4 $(G_1)_{\alpha}$ G. Biroli, C. Kollath, and AML, arXiv:0907.3731

Conclusions

- "Causal" horizon evidenced in the spreading of correlations and entanglement growth
- Nice agreement with theoretical predictions

- Small quenches in this model lead to "thermal" state w.r.t. the observables we checked.
- Deep quenches lead to apparently non-thermal steady state. Importance of rare states for finite systems
- Experimentally relevant for ultracold atomic systems, which are typically much smaller than Avogadro's number.

Thank you!