

Numerical Simulations of Quenches in Bose Hubbard models

Andreas Läuchli, "New states of quantum matter"
MPI für Physik komplexer Systeme - Dresden

http://www.pks.mpg.de/~aml

Fermi Pasta Ulam Tsingou Paradox (1953)

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history
- Big surprise: The system does not thermalize, despite the nonintegrability

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings
- A nonintegrabl
- One of the first
- Big surprise: T

Itegrability

Fig. 1. - The quantity plotted is the energy (kinetic plus potential in each of the first five modes). The units for energy are arbitrary. $N=32 ; \alpha=1 / 4 ; \delta t^{2}=1 / 8$. The initial form of the string was a single sine wave. The higher modes never exceeded in energy 20 of our units. About 30,000 computation cycles were calculated.

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history
- Big surprise: The system does not thermalize, despite the nonintegrability

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history
- Big surprise: The system does not thermalize, despite the nonintegrability
- Seminal work leading KAM Theory etc, ...

Fermi Pasta Ulam Tsingou Paradox (1953)

- A chain of harmonic oscillators, coupled with nonlinear couplings

- A nonintegrable system, should thus approach thermal equilibrium
- One of the first computer experiments in history
- Big surprise: The system does not thermalize, despite the nonintegrability
- Seminal work leading KAM Theory etc, ...
- Quantum world ?

Quantum World: Two experimental examples

- Collapse and Revival of a superfluid

- Quantum Newton's craddle
a

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
- Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
- Properties of steady state?
- Is the steady state already "thermal" ?

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
- Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
- Properties of steady state?
- Is the steady state already "thermal" ?

Optical lattices and Hamiltonian

- Bosonic atoms: tunneling between wells and interaction within the same well:

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+\text { h.c. }\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

Bose-Hubbard model

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Transition from Superfluid at large J/U to Mott Insulator at small J/U (Integer filling)

Superfluid versus Mott-Insulator

- Quantum states of bosons and their fingerprint in "time-of-flight" images

$$
\left\langle b_{i}^{\dagger} b_{j}\right\rangle \rightarrow\left\langle b_{i}^{\dagger}\right\rangle\left\langle b_{j}\right\rangle
$$

Quench from the Superfluid to Mott Insulator

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value
- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

Quench from the Superfluid to Mott Insulator

- Sudden increase of the interaction strength from small to large value

Greiner et al, Nature 2002

- Time dependence of time-of-flight images:

- Collapse and Revival ! Suppressed at longer times.

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Linear chain (up to L=64) / occasionally square lattice

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Linear chain (up to $\mathrm{L}=64$) / occasionally square lattice
- J is kept constant ($\mathrm{J}=1$)

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Linear chain (up to $\mathrm{L}=64$) / occasionally square lattice
- J is kept constant ($\mathrm{J}=1$)
- Preparation in ground state at $\mathrm{U}_{\text {initial }}$, typically in the superfluid ($\mathrm{U}_{\text {initial }}<\mathrm{U}_{\text {crit }}=3.37$)

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Linear chain (up to $\mathrm{L}=64$) / occasionally square lattice
- J is kept constant ($\mathrm{J}=1$)
- Preparation in ground state at $\mathrm{U}_{\text {initial }}$, typically in the superfluid ($\mathrm{U}_{\text {initial }}<\mathrm{U}_{\text {crit }}=3.37$)
- Time evolution of this state using new Hamiltonian at Ufinal

Our Quench Setup

$$
H=-J \sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+h . c .\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

- Linear chain (up to $L=64$) / occasionally square lattice
- J is kept constant ($\mathrm{J}=1$)
- Preparation in ground state at $\mathrm{U}_{\text {initial }}$, typically in the superfluid ($\mathrm{U}_{\text {initial }}<\mathrm{U}_{\text {crit }}=3.37$)
- Time evolution of this state using new Hamiltonian at Ufinal
- Time evolution is performed numerically using Exact Diagonalization and t-DMRG

Exact Diagonalization Real-Time Dynamics

- It is expensive to obtain the full propagator $\exp [-i t H]$
- Krylov methods exist to approximate the propagator for a given state $|\psi(0)\rangle$ One can get the time propagated state $|\psi(t)\rangle$ with only $|v\rangle=H|v\rangle$ operations.

$$
\begin{aligned}
\left|\phi^{\prime}\right\rangle & =H\left|\phi_{n}\right\rangle-\beta_{n}\left|\phi_{n-1}\right\rangle, \\
\alpha_{n} & =\left\langle\phi_{n} \mid \phi^{\prime}\right\rangle, \\
\left|\phi^{\prime \prime}\right\rangle & =\left|\phi^{\prime}\right\rangle-\alpha_{n}\left|\phi_{n}\right\rangle, \\
\beta_{n+1} & =\left\|\phi^{\prime \prime}\right\|=\sqrt{\left\langle\phi^{\prime \prime} \mid \phi^{\prime \prime}\right\rangle}, \quad \tilde{H}_{N}=\left[\begin{array}{cccccc}
\alpha_{0} & \beta_{1} & 0 & \ldots \ldots & \ldots \ldots & 0 \\
\beta_{1} & \alpha_{1} & \beta_{2} & 0 & \ldots . & 0 \\
0 & \beta_{2} & \alpha_{2} & \beta_{3} & 0 & 0 \\
& & \ddots & \ddots & \ddots & \\
0 & \ldots & 0 & \beta_{N-2} & \alpha_{N-2} & \beta_{N-1} \\
0 & \ldots & \cdots & 0 & \beta_{N-1} & \alpha_{N-1}
\end{array}\right]=\left|\phi^{\prime \prime}\right\rangle / \beta_{n+1},
\end{aligned}
$$

- Calculate matrix exponential of H_{N}, instead of the full Hamiltonian
- Time evolution of quantum systems with up to 10^{8} degrees of freedom (dim H)

Numerical Methods: tDMRG

- t-DMRG (large systems L=100++, but relatively short times)
- Adaptive control of the optimal Hilbert space as time evolves.

G. Vidal PRL '03
- Maximum time depends on entanglement growth.
A. Daley et al., JSTAT '04 S. White \& A. Feiguin, PRL '04
- More refined approaches can reach larger times (however still require exponential resources):
- Light-cone MPS
M. Hastings, J. Math. Phys. 2009
M.C. Bañuls, et al., PRL 2009
M.C. Bañuls, et al., arXiv:1007:3957
- Heisenberg picture

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
- Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
- Properties of steady state?
- Is the steady state already "thermal" ?

Superfluid correlation

- Pronounced collapse and revival. Relaxation to steady state at later times
- Collapse and revival controlled by U
- Relaxation faster for larger bandwidth (1D/2D)

Space-time dependence of correlators

- Correlation functions at different spatial separations:

Space-time dependence of correlators

- Correlation functions at different spatial separations:

Space-time dependence of correlators

- Correlation functions at different spatial separations:

Space-time dependence of correlators

- Correlation functions at different spatial separations:

Lightcone / Horizon effect

- More distant sites see correlation signal pass at later times. Linear relation.

Lightcone / Horizon effect

- More distant sites see correlation signal pass at later times. Linear relation.

von Neumann Entanglement Entropy (first static)

- Saturation of $\mathrm{vN} E E$ in gapped phase
- Logarithmic divergence in critical phase (single component $\mathrm{c}=1$)

- Entropy increase upon system doubling reveals the phase transition quite accurately.

Entanglement time evolution

- von Neumann entropy of a block A consisting of I sites $S_{A}=\operatorname{Tr}_{A}\left[-\rho_{A} \log \rho_{A}\right]$ $\mathrm{PBC} \square \mathrm{A} \square \mathrm{A}$

Entanglement time evolution

- von Neumann entropy of a block A consisting of I sites $S_{A}=\operatorname{Tr}_{A}\left[-\rho_{A} \log \rho_{A}\right]$

Entanglement time evolution

- von Neumann entropy of a block A consisting of I sites $S_{A}=\operatorname{Tr}_{A}\left[-\rho_{A} \log \rho_{A}\right]$

Entanglement time evolution

- Linear growth in time first, then saturation to value proportional to I

AML and Kollath, JSTAT '08

Calabrese and Cardy, JSTAT '05
G. De Chiara et al., JSTAT '06

Outline

- Experimental Motivation: Ultracold bosons in an optical lattice
- Short time behavior
- Light-cone effect: spreading of correlations entanglement entropy
- Long time behavior
- Properties of steady state?
- Is the steady state already "thermal" ?

Relaxation

- Properties of the steady state after the relaxation

Relaxation

- Properties of the steady state after the relaxation

Weak Quench: Looks "thermal"

Weak Quench: Looks "thermal"

Deep Quench: non-thermal / memory effect?

(b) 2D Square Lattice

Deep Quench: non-thermal / memory effect?

(b) 2D Square Lattice

Quench depth dependence

- Appearance of a seemingly non-thermal steady state at large Ufinal
- Why is this?
(Non)-Integrability? atypical eigenstates targeted?

Back to the roots

- At $t>0 \quad|\psi(t)\rangle=e^{-i H t}\left|\psi_{0}\right\rangle$, and long time averages are given by:

$$
\begin{gathered}
\langle\mathcal{O}\rangle_{\infty}=\frac{1}{T} \int_{0}^{T} d t\langle\psi(t)| \mathcal{O}|\psi(t)\rangle=\frac{1}{T} \int_{0}^{T} d t \sum_{\alpha, \beta} c_{\alpha} c_{\beta}^{*} e^{-i t\left(E_{\alpha}-E_{\beta}\right)}\langle\beta| \mathcal{O}|\alpha\rangle \\
\left.\langle\mathcal{O}\rangle_{\infty}=\sum_{\alpha}\left|c_{\alpha}\right|^{2}\langle\alpha| \mathcal{O}|\alpha\rangle=\operatorname{Tr}\left[\rho_{D} \mathcal{O}\right] \quad \rho_{0}\right\rangle=\sum_{\alpha}\left|c_{\alpha}\right|^{2}|\alpha\rangle\langle\alpha|
\end{gathered}
$$

- Thermalization:
von Neumann 1929

Eigenstate thermalization hypothesis (ETH)

- Deutsch (91), Srednicki (94)

The expectation value $\langle\alpha| \mathcal{O}|\alpha\rangle$ of a few body observable in an eigenstate $|\alpha\rangle$ of a large interacting many body system equals the thermal micro-canonical average at the intensive energy E_{α} / N.

- Rigol, Dunjiko, Olshanii, Nature 2008

In the diagonal ensemble the intensive energy does not fluctuate and is equal (by definition) to the micro-canonical one

$$
\left(\sum\left(E_{\alpha} / N\right)^{2}\left|c_{\alpha}\right|^{2}-\left(\sum\left(E_{\alpha} / N\right)\left|c_{\alpha}\right|^{2}\right)^{2} \rightarrow 0 \quad \text { for } \quad N \rightarrow \infty\right)
$$

-Thermalization:

$$
\sum_{\alpha}\left|c_{\alpha}\right|^{2}\langle\alpha| \mathcal{O}|\alpha\rangle=\sum_{\alpha}\left|c_{\alpha}\right|^{2}\langle O\rangle_{E_{\alpha}, N}=\langle O\rangle_{E, N}
$$

Quench: Overlap with U_{f} eigenbasis

- Extensive amount of energy pumped into the system through the quench

$$
f(\omega)=\sum_{\alpha}\left|c_{\alpha}\right|^{2} \times \delta\left(N \omega-E_{\alpha}\right)
$$

Quench: Cumulants of overlaps

- Cumulants of Quench distribution: low cumulants approach Gaussian values (as in CLT)

$$
f(\omega)=\sum_{\alpha}\left|c_{\alpha}\right|^{2} \times \delta\left(N \omega-E_{\alpha}\right)
$$

see also S. Manmana et al., PRL 2007; M. Rigol et al., Nature 2008

- What do very high moments do ? Does some structure survive ?

ETH: G_{1} of eigenstates at $U / J=1$

- at small U rare states seem to absent already for small system sizes.

$$
\left(\mathcal{G}_{1}\right)_{\alpha}=\langle\alpha| b_{j}^{\dagger} b_{j+1}|\alpha\rangle
$$

G. Biroli, C. Kollath, and AML, arXiv:0907.3731
M. Rigol et al., Nature 2008

ETH ?: G_{1} of eigenstates at $\mathrm{U} / \mathrm{J}=10$

Full diagonalization results for small systems $\quad\left(\mathcal{G}_{1}\right)_{\alpha}=\langle\alpha| b_{j}^{\dagger} b_{j+1}|\alpha\rangle$

Conclusions

- "Causal" horizon evidenced in the spreading of correlations and entanglement growth
- Nice agreement with theoretical predictions
- Small quenches in this model lead to "thermal" state w.r.t. the observables we checked.
- Deep quenches lead to apparently non-thermal steady state. Importance of rare states for finite systems
- Experimentally relevant for ultracold atomic systems, which are typically much smaller than Avogadro's number.

Thank you!

