Exotic gapless Bose metals and insulators on multi-leg ladders

A BAR BAL

Ryan V. Mishmash University of California, Santa Barbara

Collaborators:

Matt Block (UCSB), Ribhu Kaul (Kentucky / Station Q), Donna Sheng (CSUN), Olexei Motrunich (Caltech), Matthew Fisher (UCSB / Caltech)

Outline

↓ Introduction to the "*d*-wave Bose liquid"

Where, how, and why?

Gapless Mott *insulator* on the 3-leg ladder
 arXiv:1008.4105

Gapless Bose *metals* on 3- and 4-leg ladders
Still in progress...

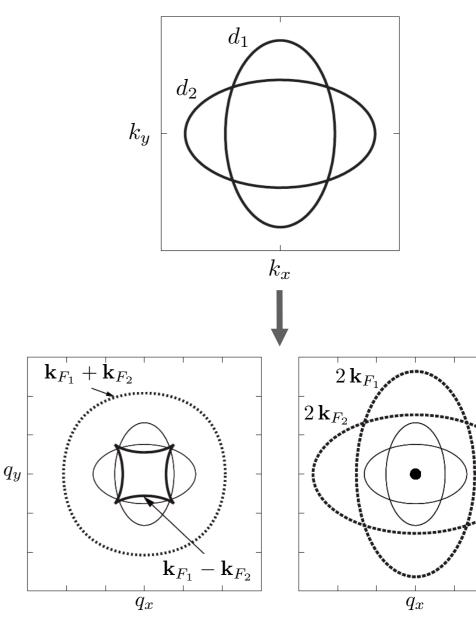
Overview: *d*-wave Bose liquid (DBL)

👃 System in mind

- □ Itinerant hard-core bosons
- D square lattice
- Important properties
 - □ *d*-wave correlations (nontrivial signs)
 - No broken symmetries
 - Gapless excitations on "Bose surfaces" in momentum space

Construction

Gutzwiller projected product of filled Fermi seas (FFSs):



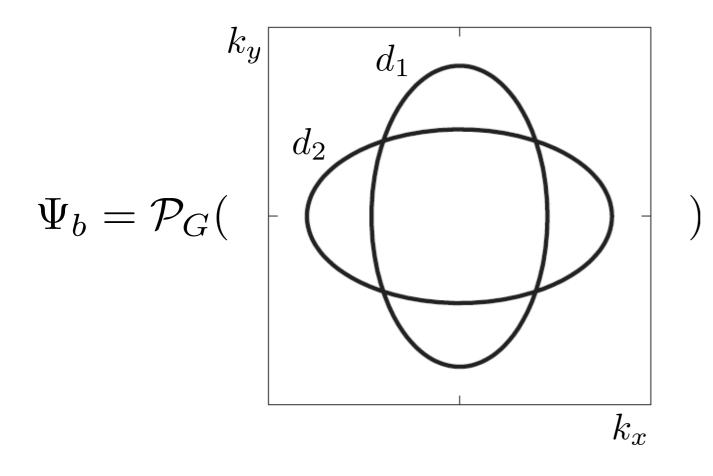
$$\Psi_b(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)=\Psi_{d_1}(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)\Psi_{d_2}(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$$

Motrunich and MPAF, PRB **75**, 235116 (2007)

Slater determinants with FFSs compressed in *x* and *y* directions

Variational wave functions and gauge theory

Projected Fermi sea wave functions



Gutzwiller projection:

$$\mathcal{P}_G : n_{d_1}(\mathbf{r}) = n_{d_2}(\mathbf{r}) \ \forall \ \mathbf{r}$$
$$n_{d_\alpha} \in \{0, 1\}$$

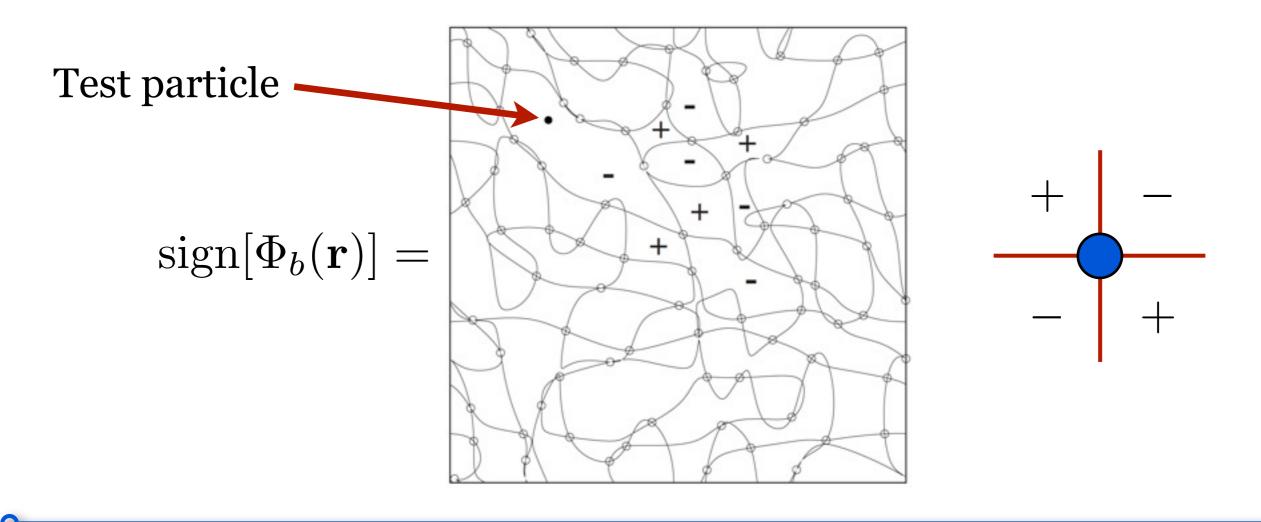
4 Gauge theory description: $\hat{b}^{\dagger} = \hat{d}_1^{\dagger} \hat{d}_2^{\dagger}$

□ d₁ and d₂ hopping on square lattice coupled to U(1) gauge field
 □ Strong coupling limit realizes \$\hat{b}^{\dagger}\hat{b} = \hat{d}_{1}^{\dagger}\hat{d}_{1} = \hat{d}_{2}^{\dagger}\hat{d}_{2}\$

Sign structure (why "*d*-wave"?)

- $\Psi_b(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \Psi_{d_1}(\mathbf{r}_1,\ldots,\mathbf{r}_N)\Psi_{d_2}(\mathbf{r}_1,\ldots,\mathbf{r}_N) = (\det)_x \times (\det)_y$
- Expect for 2-particle correlations:

 $\Phi_b(\mathbf{r}) \sim (x - x_i)(y - y_i)$, where $\Phi_b(\mathbf{r}) \equiv \Psi_b(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N)$



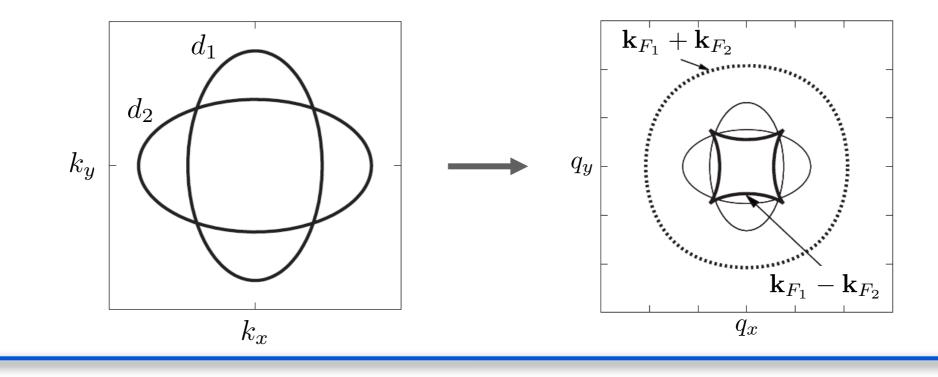
So what are these "Bose surfaces"?

Result of oscillatory power law correlations in real space

- **4** Boson Green's function: $G_b(\mathbf{r}) \equiv \langle \hat{b}_{\mathbf{r}}^{\dagger} \hat{b}_{\mathbf{0}} \rangle$
 - $\square \text{ Mean-field: } G_b^{MF}(\mathbf{r}) = G_{d_1}^{MF}(\mathbf{r}) G_{d_2}^{MF}(\mathbf{r}) / \nu$

$$G_{d_{\alpha}}^{MF}(\mathbf{r}) \approx \frac{1}{2^{1/2} \pi^{3/2}} \frac{\cos(\mathbf{k}_{F_{\alpha}} \cdot \mathbf{r} - 3\pi/4)}{c_{\alpha}^{1/2} |\mathbf{r}|^{3/2}}, \ \mathbf{k}_{F_{\alpha}} = \mathbf{k}_{F_{\alpha}}(\hat{\mathbf{r}})$$

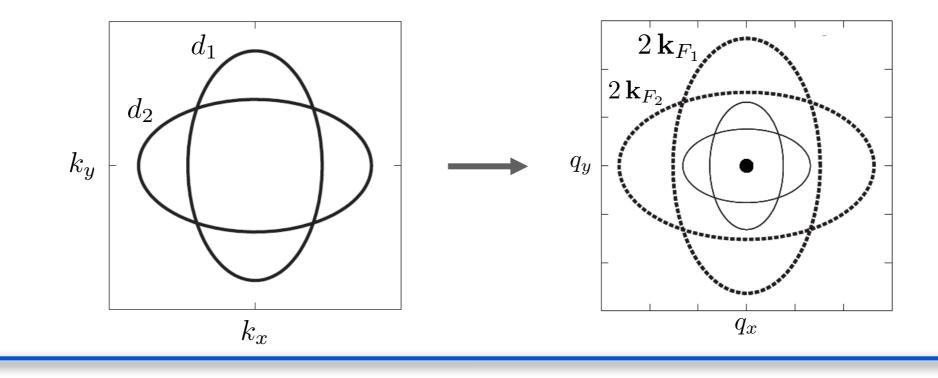
□ Singularities in boson momentum distribution at $k_{F_1}(\hat{\mathbf{r}}) \pm k_{F_2}(\hat{\mathbf{r}})$



Another singular surface ...

↓ Density-density correlation function: $D_b(\mathbf{r}) \equiv \langle (\hat{n}_{\mathbf{r}} - \nu)(\hat{n}_{\mathbf{0}} - \nu) \rangle, \ \nu = \text{filling factor}$ □ Mean-field: $D_b^{MF}(\mathbf{r}) \approx \frac{1}{2} [D_{d_1}^{MF}(\mathbf{r}) + D_{d_2}^{MF}(\mathbf{r})]$ $D_{d_{\alpha}}^{MF}(\mathbf{r}) = -|G_{d_{\alpha}}^{MF}(\mathbf{r})|^2 \sim -\frac{1 + \cos[2\mathbf{k}_{F_{\alpha}} \cdot \mathbf{r} - 3\pi/2]}{c_{\alpha}|\mathbf{r}|^3}$

□ Singularities in density-density structure factor at $2k_{F_{\alpha}}(\hat{\mathbf{r}})$



Outline

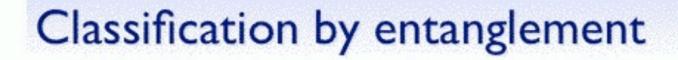
Introduction to the "d-wave Bose liquid"

Where, how, and why?

Gapless Mott *insulator* on the 3-leg ladder
 arXiv:1008.4105

Gapless Bose *metals* on 3- and 4-leg ladders
Still in progress...

Philippe Corboz, CompQCM, 12/02/2010:

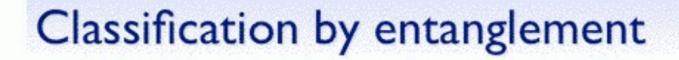


Entanglement

band insulators, low gapped systems valence-bond crystals, s-wave superconductors, ... Heisenberg model, gapless systems p-wave superconductors, Dirac Fermions, ... high systems with free Fermions, Fermi-liquid "ID fermi surface" type phases, bose-metals? $S(L) \sim L \log L$

9

Philippe Corboz, CompQCM, 12/02/2010:



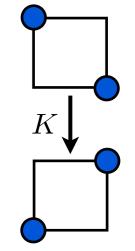
Entanglement

band insulators, low gapped systems valence-bond crystals, s-wave superconductors, ... Heisenberg model, gapless systems p-wave superconductors, Dirac Fermions, ... high systems with free Fermions, Fermi-liquid type phases bose-metals? "ID fermi surface" $S(L) \sim L \log L$

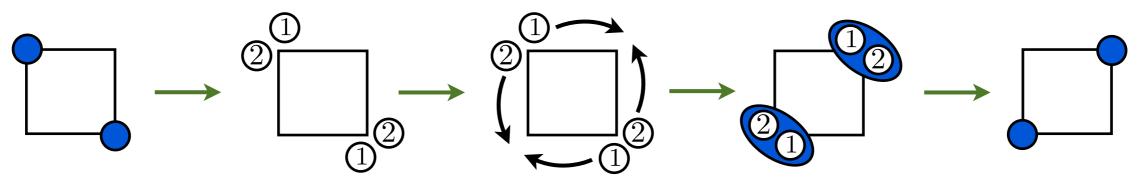
Where (to look)?

Frustrated 4-site ring-exchange "J-K model"

$$\hat{H}_{JK} = -J \sum_{\mathbf{r}} (\hat{b}_{\mathbf{r}}^{\dagger} \hat{b}_{\mathbf{r}+\hat{\mathbf{x}}} + \text{h.c.}) - J_{\perp} \sum_{\mathbf{r}} (\hat{b}_{\mathbf{r}}^{\dagger} \hat{b}_{\mathbf{r}+\hat{\mathbf{y}}} + \text{h.c.}) + K \sum_{\mathbf{r}} (\hat{b}_{\mathbf{r}}^{\dagger} \hat{b}_{\mathbf{r}+\hat{\mathbf{x}}} \hat{b}_{\mathbf{r}+\hat{\mathbf{x}}+\hat{\mathbf{y}}}^{\dagger} \hat{b}_{\mathbf{r}+\hat{\mathbf{y}}} + \text{h.c.})$$



- Strong coupling limit of gauge theory for DBL
- □ Anisotropic hopping of two fermion species + Gutzwiller projection

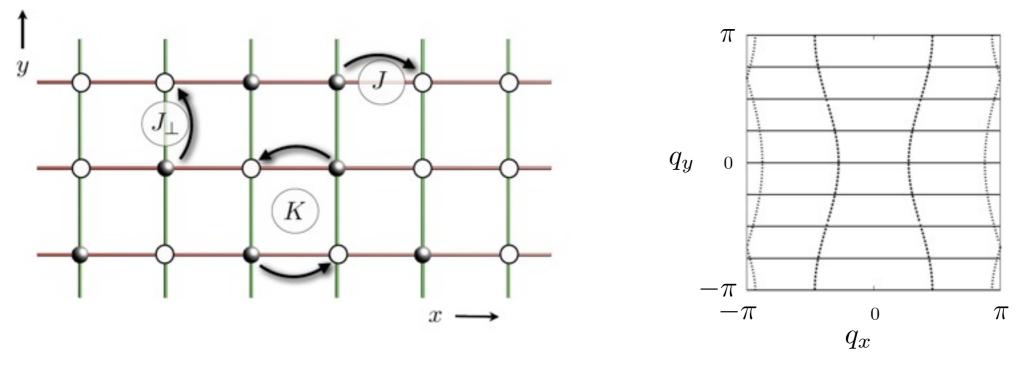


Unfrustrated (K < 0) case known from QMC</p>

Sandvik *et al.*, PRL (2002); Melko *et al.*, PRB Rapid (2004)

How (to access)?

- 4 Sign problem ...
 - But ... DBL has singular surfaces in momentum space
 - □ So ... can controllably be studied on the *N*-leg ladder



- 4 Methods of attack: DMRG, VMC, ED, bosonization
- 4 2-leg ladder already thoroughly investigated
 - □ Sheng *et al.*, PRB **78**, 054520 (2008)

Why (should anyone care)?

DBL is very much a non-Fermi liquid

- □ New uncondensed (non-superfluid) phase of itinerant bosons
- Lack of long-lived quasiparticles
- □ DBL as piece of "*d*-wave metal" for model wave function of the strange metal in high-T_c? (See MPAF's talks)

$$\Psi_{NFL} = \mathcal{P}_G[\Psi_f^{FF} \times \Psi_b^{DBL}]$$

- Cold atom realizations?
 - □ Two species of fermions + anisotropic hopping + attraction
 - Feiguin and MPAF, PRL (2009); Feiguin and MPAF, arXiv:1007.5251
 - □ Engineer ring-exchange Hamiltonian [Buchler *et al.*, PRL (2005)]
- U(1) limit of exotic state of SU(2) spins in Zeeman field?

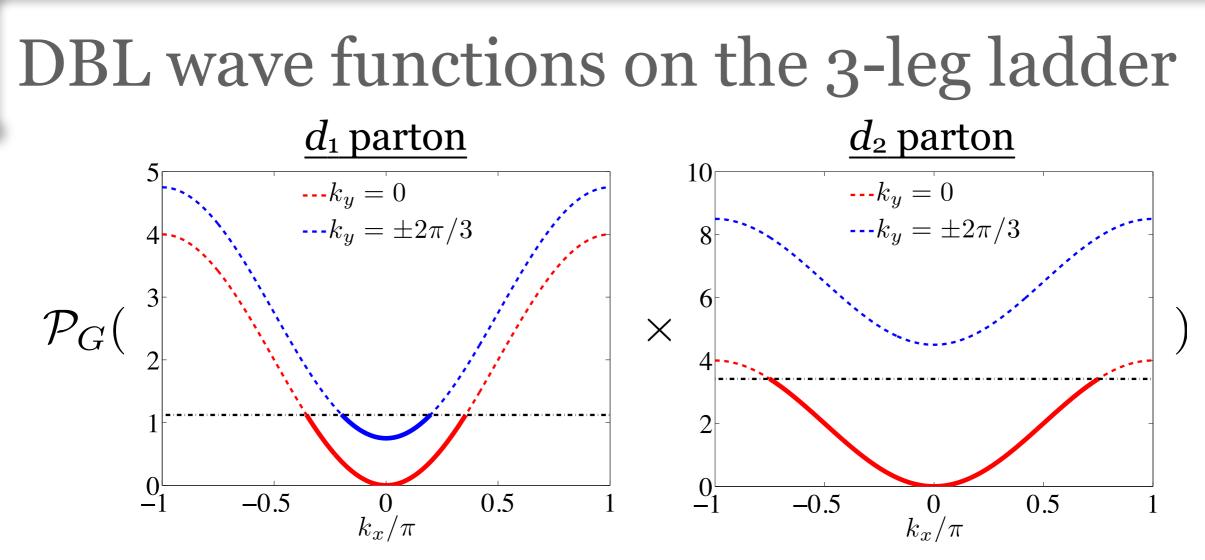
Outline

Introduction to the "d-wave Bose liquid"

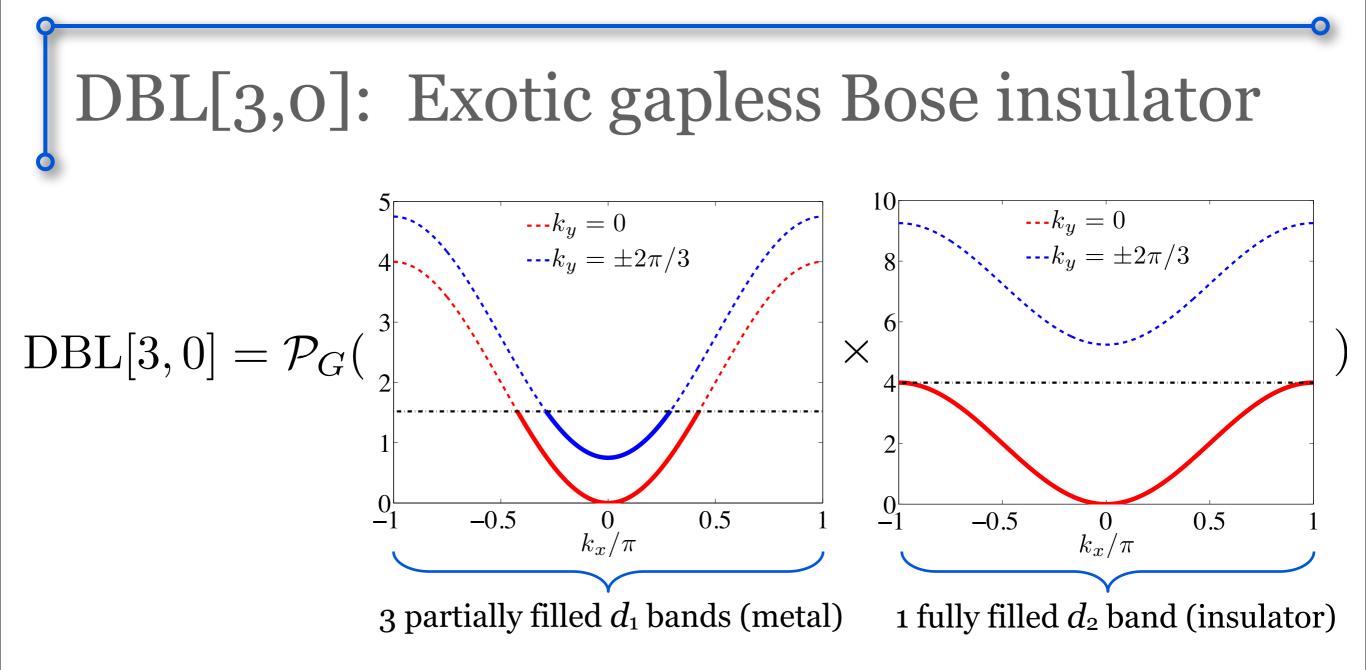
Where, how, and why?

Gapless Mott *insulator* on the 3-leg ladder
 arXiv:1008.4105

Gapless Bose *metals* on 3- and 4-leg ladders
Still in progress...



- Wave function properties
 - Depends only on filled momenta, not dispersions
 - □ Oscillatory power law correlations: fingerprints of "Bose surfaces"
 - Fermi points of partons \rightarrow "Bose points"
- Location: DBL[*n*, *m*]
 - \Box *n*, *m* partially filled d_1 , d_2 bands
 - □ Example above: DBL[3,1]



Filling factor: $v = 1/3 = 1/L_y$

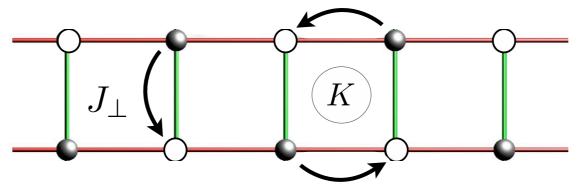
👃 Features

- □ Filled d_2 band → exactly 1 boson per rung (1D insulator)
- □ Still 3 1 = 2 gapless 1D modes

 \Box 2*k*_{*F*} wave vectors from *d*₁ visible in boson density-density structure factor

Aside: What about the 2-leg ladder at 1/2 filling?

- **4** First focus on case J = 0
 - One boson per rung



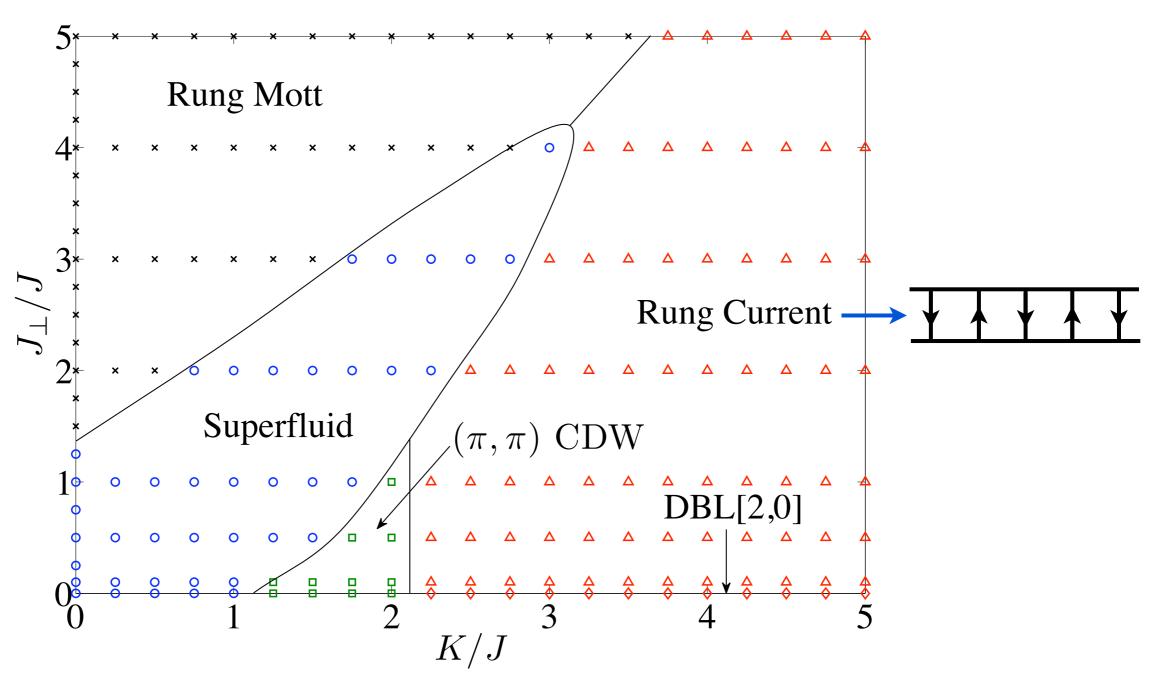
□ Maps onto 1D XY model in an *in-plane* field

$$\hat{H}_{XY} = K \sum_{i} (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \text{h.c.}) - J_\perp \sum_{i} \hat{\sigma}_i^x$$

Phase diagram

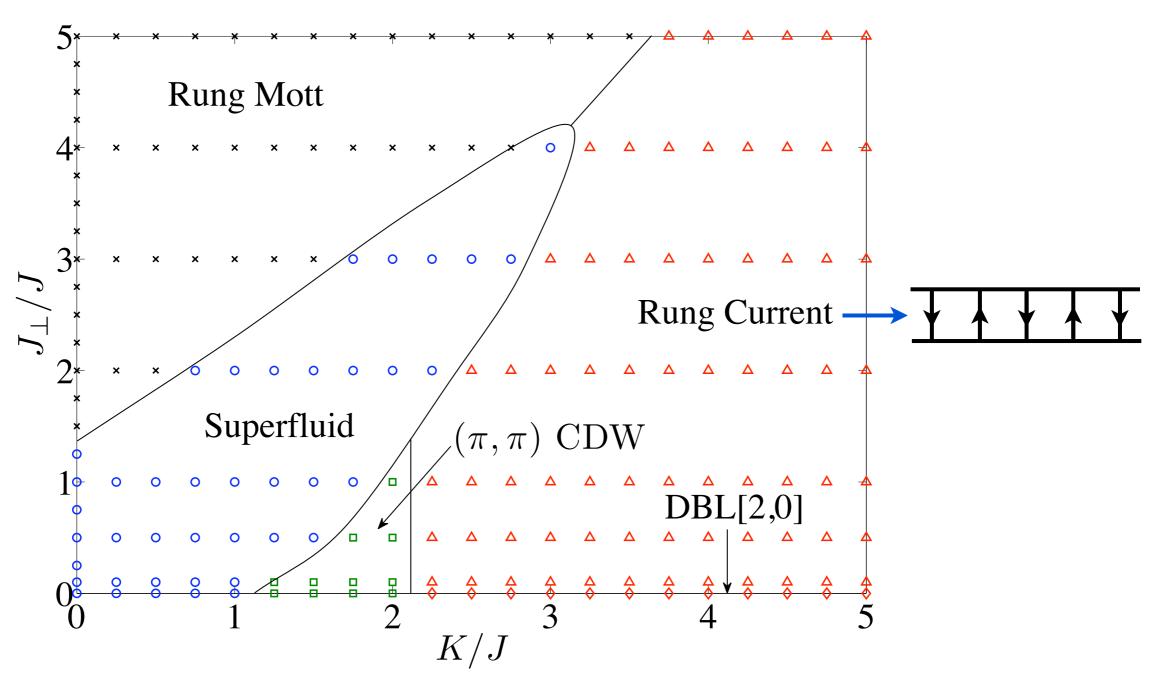
XY Canted Magnet Paramagnet
0 (Rung Currents) (Rung Mott)
$$J_{\perp}/K$$

Full 2-leg, 1/2-filling phase diagram (DMRG)



No exotic gapless insulating phase (except boring "[2,0]" at $J_{\perp} = 0$) ...

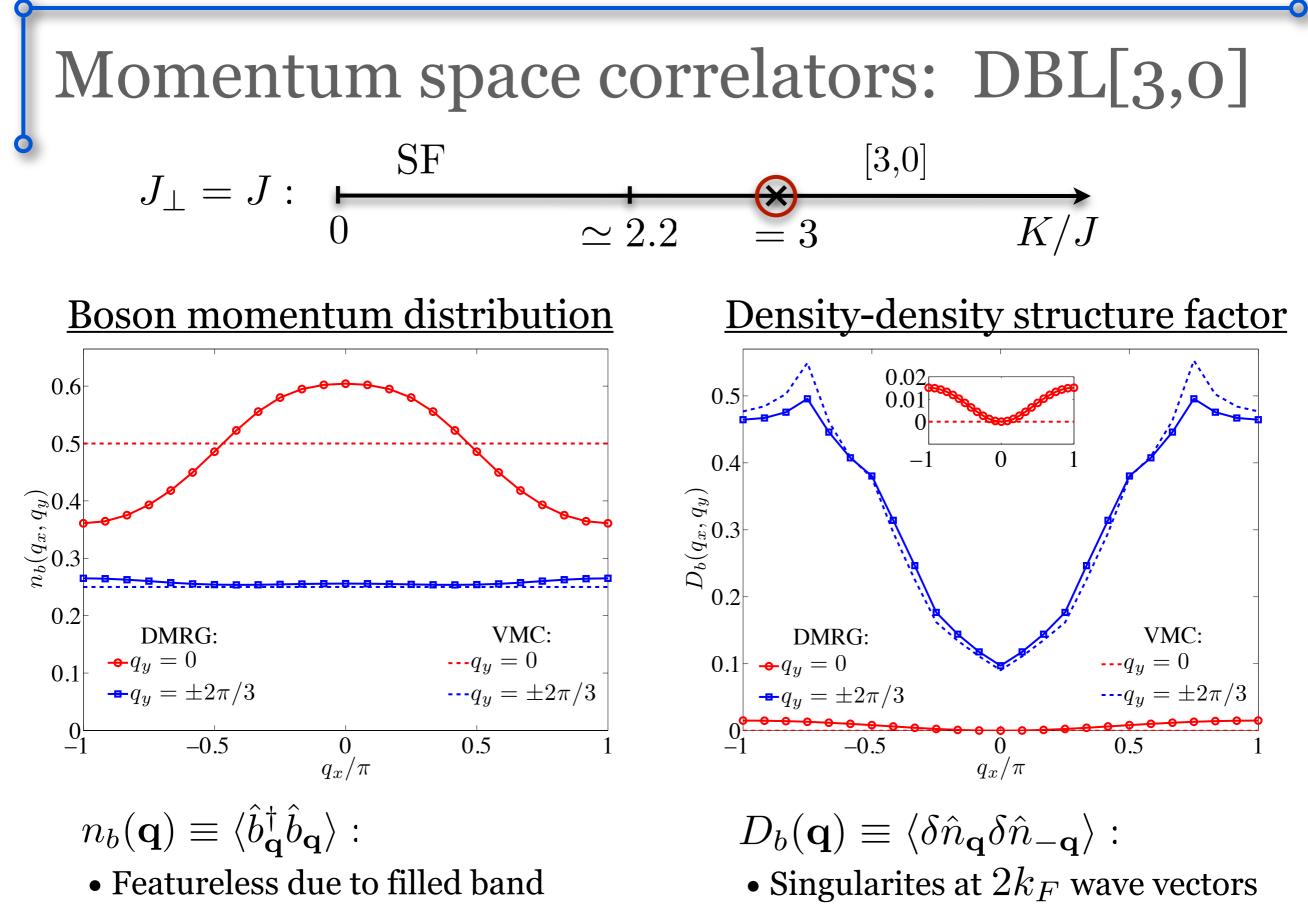
Full 2-leg, 1/2-filling phase diagram (DMRG)



No exotic gapless insulating phase (except boring "[2,0]" at $J_{\perp} = 0$) ...

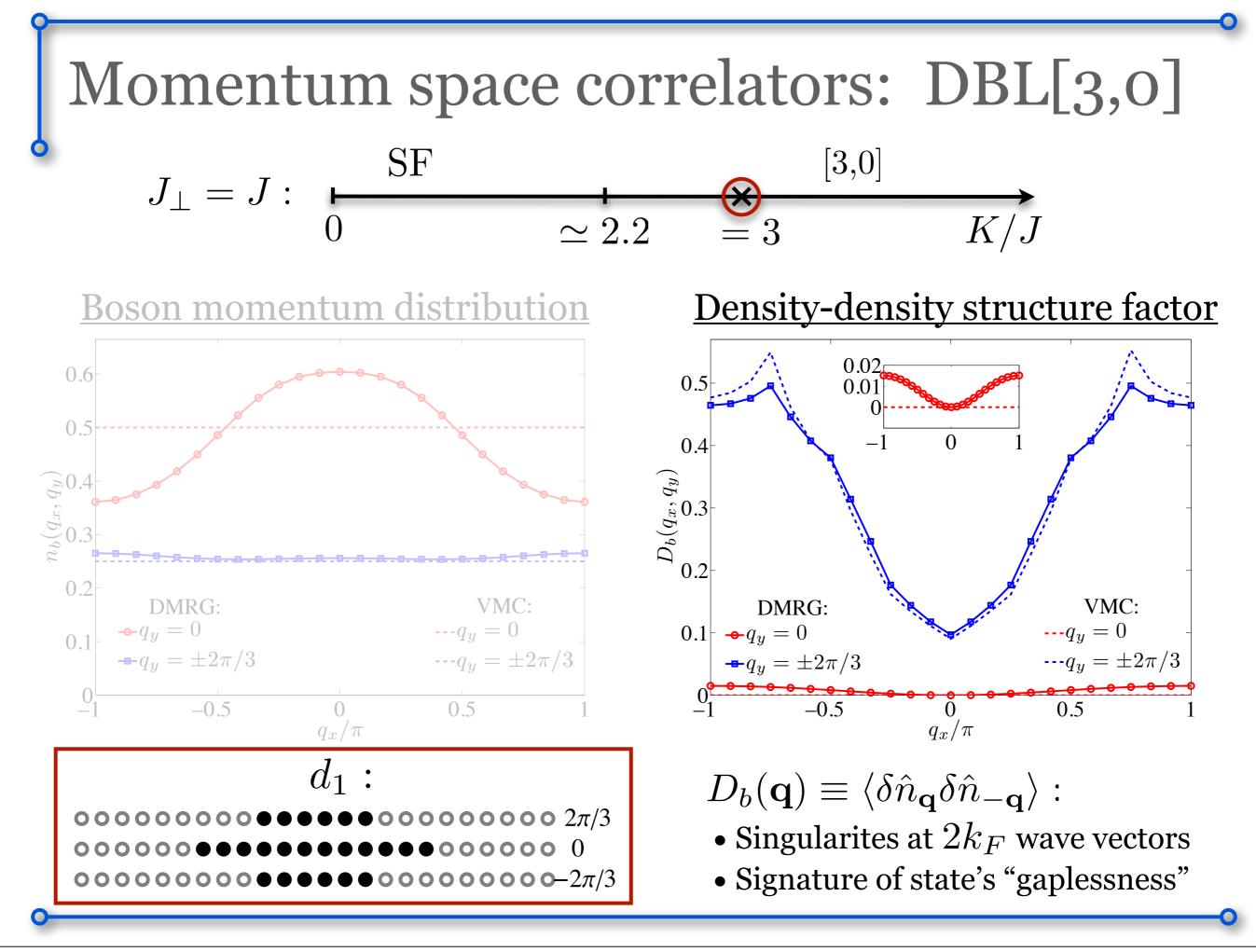
But ... DBL[3,0] is a stable phase of the 3-leg *J*-*K* model

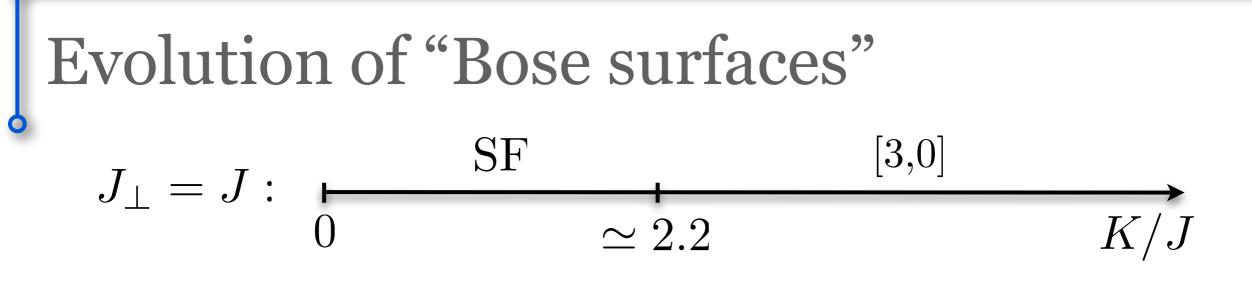
Momentum space correlators: Superfluid $J_{\perp} = J : \underset{0}{\overset{\text{SF}}{\longleftarrow}} \underbrace{}_{= 1}$ $[3,\!0]$ ~ 2.2 K/J<u>Density-density structure factor</u> **Boson momentum distribution** 0.3 14 DMRG: $- q_y = 0$ 12 0.25 $- q_{y} = \pm 2\pi/3$ 10 0.2 $D_b(q_x, q_y)$ $n_b(q_x,q_y)$ 8 0.1 DMRG: $\times 20$ 0.05 $- q_y = 0$ $- q_y = \pm 2\pi/3$ -0^{L} -0.5 0.5 0.5 -0.50 q_x/π q_x/π $n_b(\mathbf{q}) \equiv \langle \hat{b}^{\dagger}_{\mathbf{q}} \hat{b}_{\mathbf{q}} \rangle$: $D_b(\mathbf{q}) \equiv \langle \delta \hat{n}_{\mathbf{q}} \delta \hat{n}_{-\mathbf{q}} \rangle$: • Bose condensate at $\mathbf{q} = 0$ • $|q_x|$ dependence around $q_x = 0$ • 1D Quasi-ODLRO at $q_y = 0$

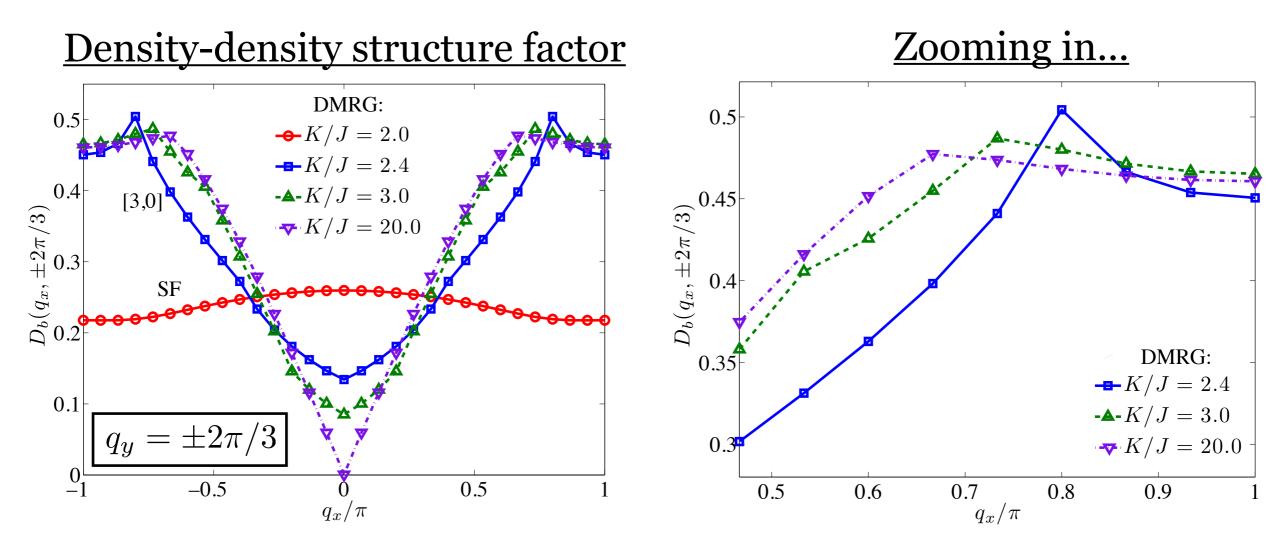


• Signature of 1D insulator

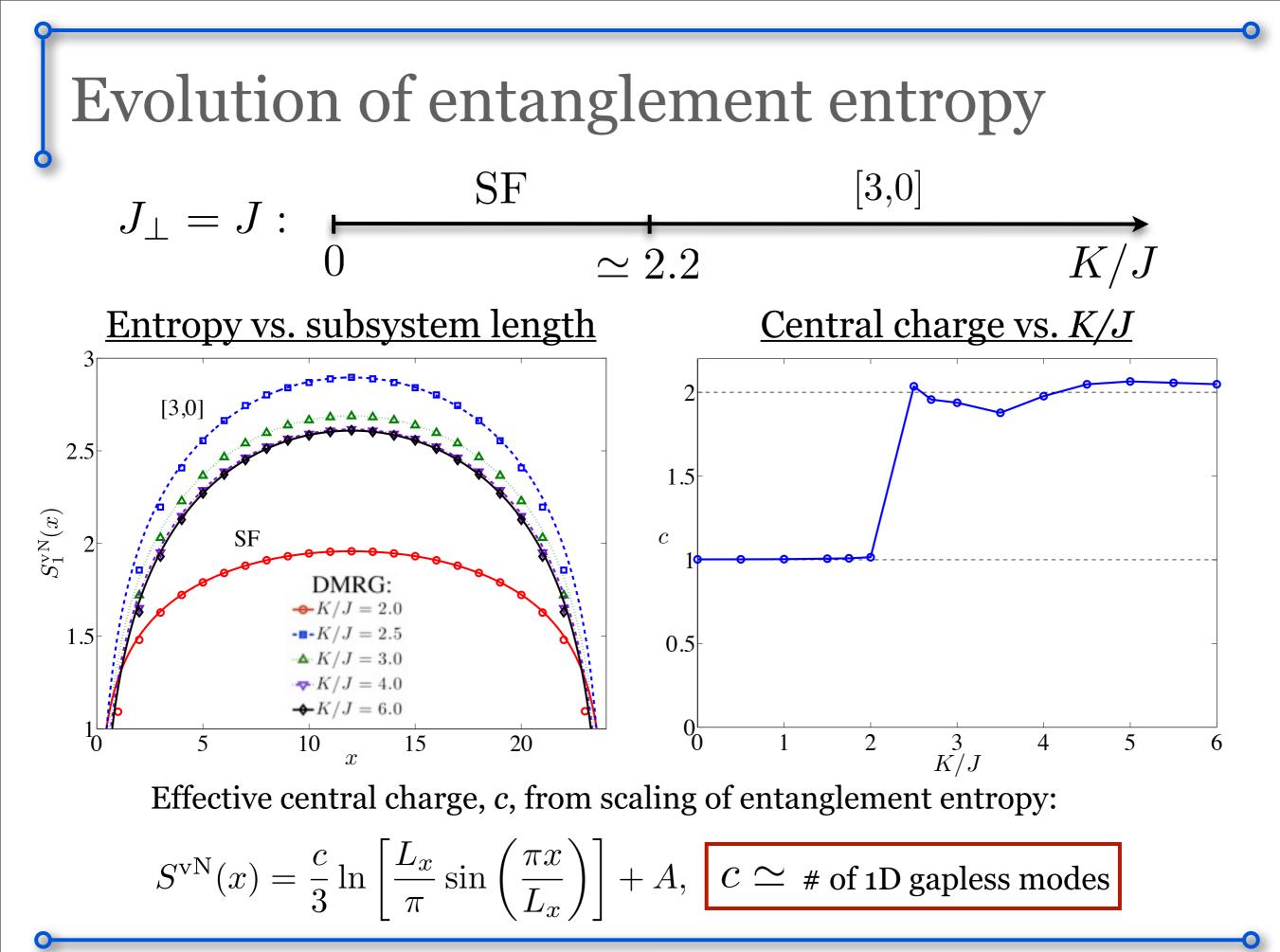
• Signature of state's "gaplessness"



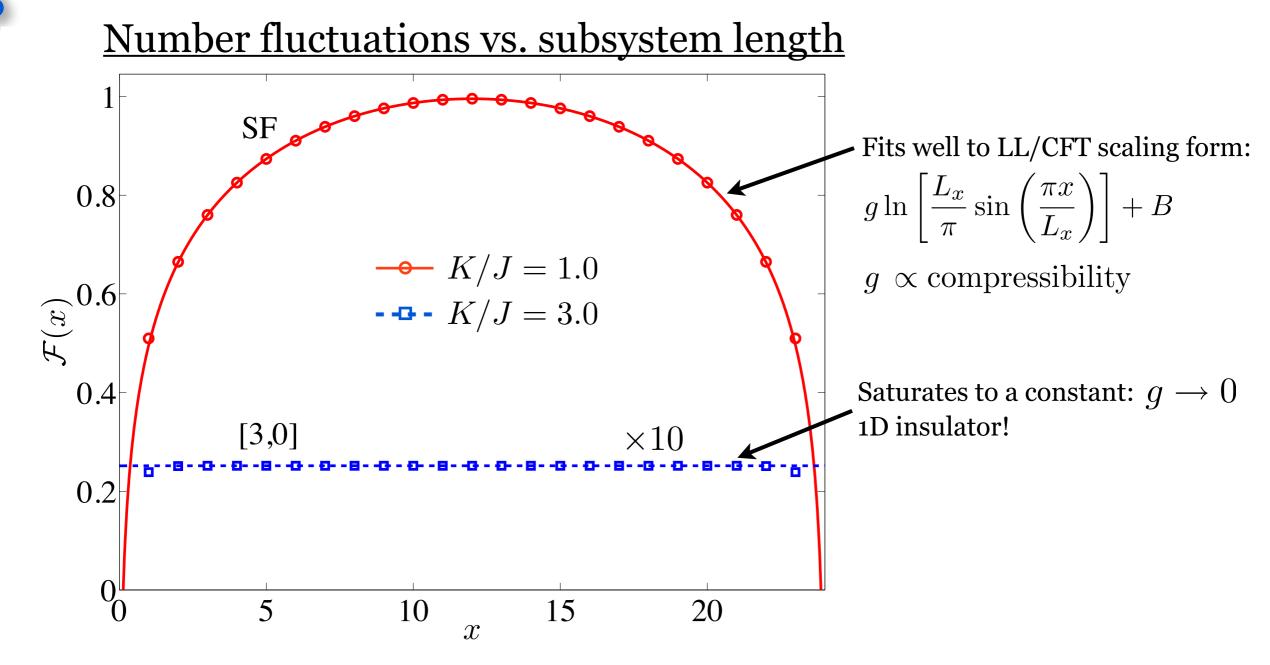




Evolution of peaks consistent with different d_1 band fillings



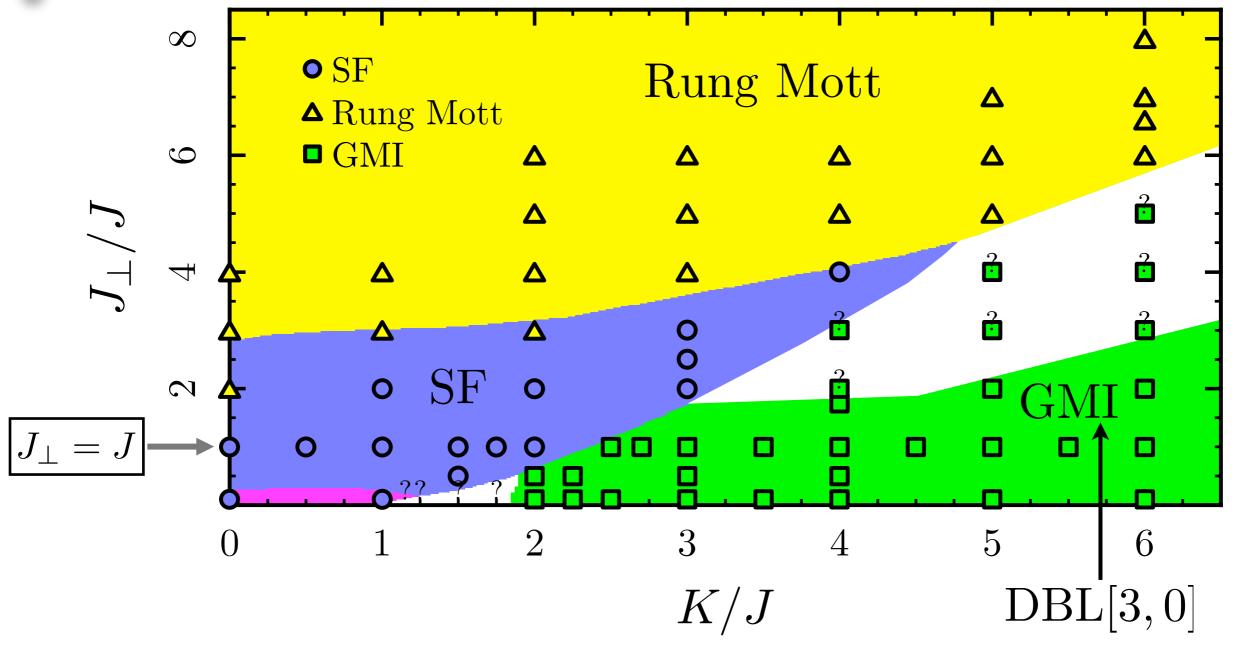
Scaling of bipartite number fluctuations



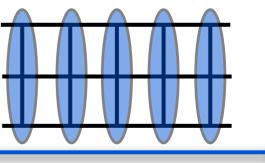
 $\mathcal{F}(x) \equiv \langle (\hat{N}_A - \langle \hat{N}_A \rangle)^2 \rangle, \ A = \text{leftmost contiguous block of size } 3x = L_y x$

Cf. recent work relating bipartite entanglement and fluctuations in 1D: Song, Rachel, and Le Hur, PRB **82**, 012405 (2010)

Full 3-leg, 1/3-filling phase diagram (DMRG and VMC)



Rung Mott = conventional 1D Mott insulator:



Extensions of DBL[3,0] to 2D

- Relative (nephew?) of "extremal DLBL" in 2D case
- 4 Quasi-1D
 - □ DBL[*N*,0] on the *N*-leg ladder at v = m/N?
- 4 Quasi-2D
 - □ Gapless Bose insulator on an *N*-layered system at filling v = m/N?

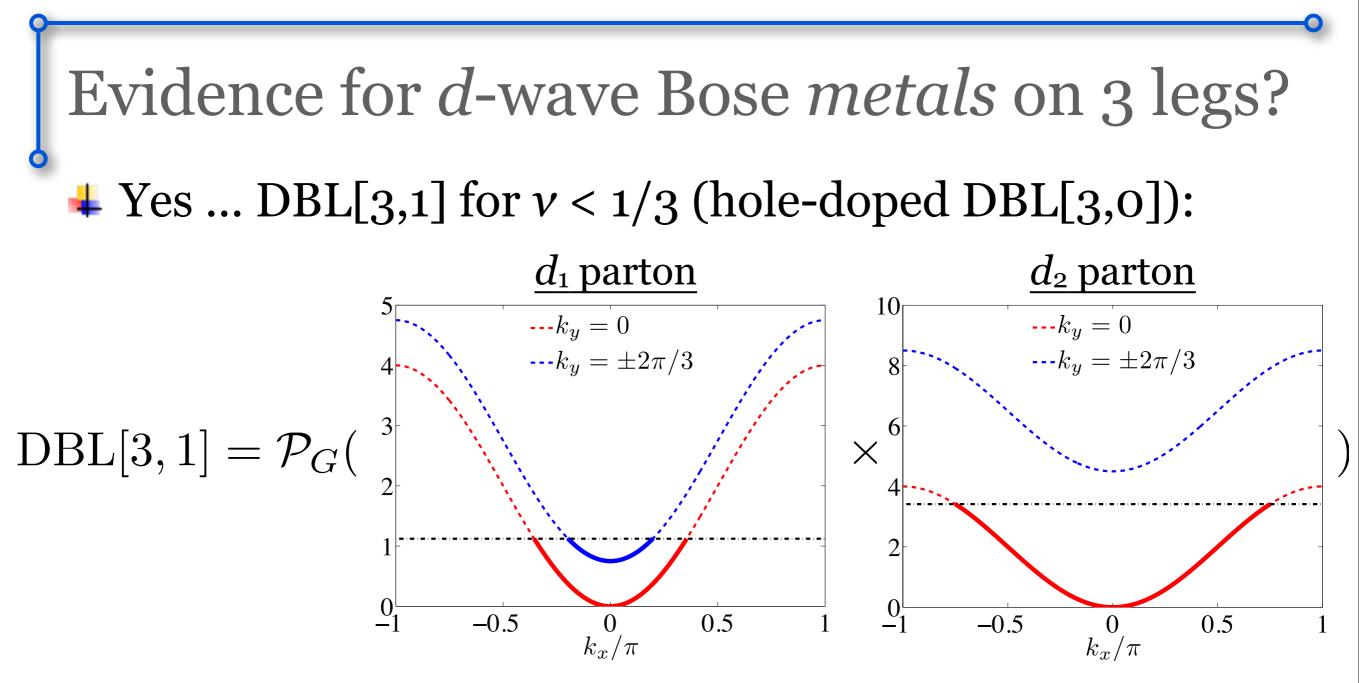
Outline

Introduction to the "d-wave Bose liquid"

Where, how, and why?

Gapless Mott *insulator* on the 3-leg ladder
 arXiv:1008.4105

Gapless Bose *metals* on 3- and 4-leg ladders
Still in progress...

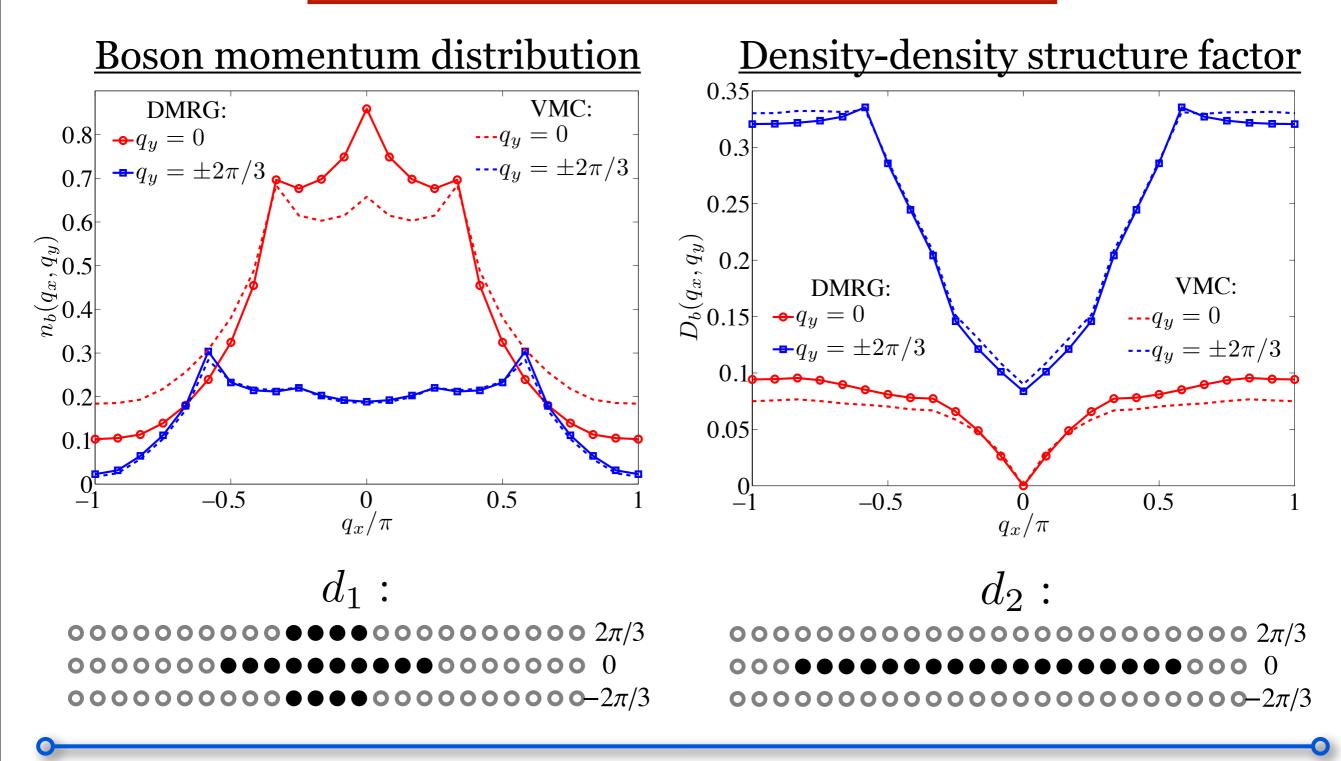


\rm 4 But ...

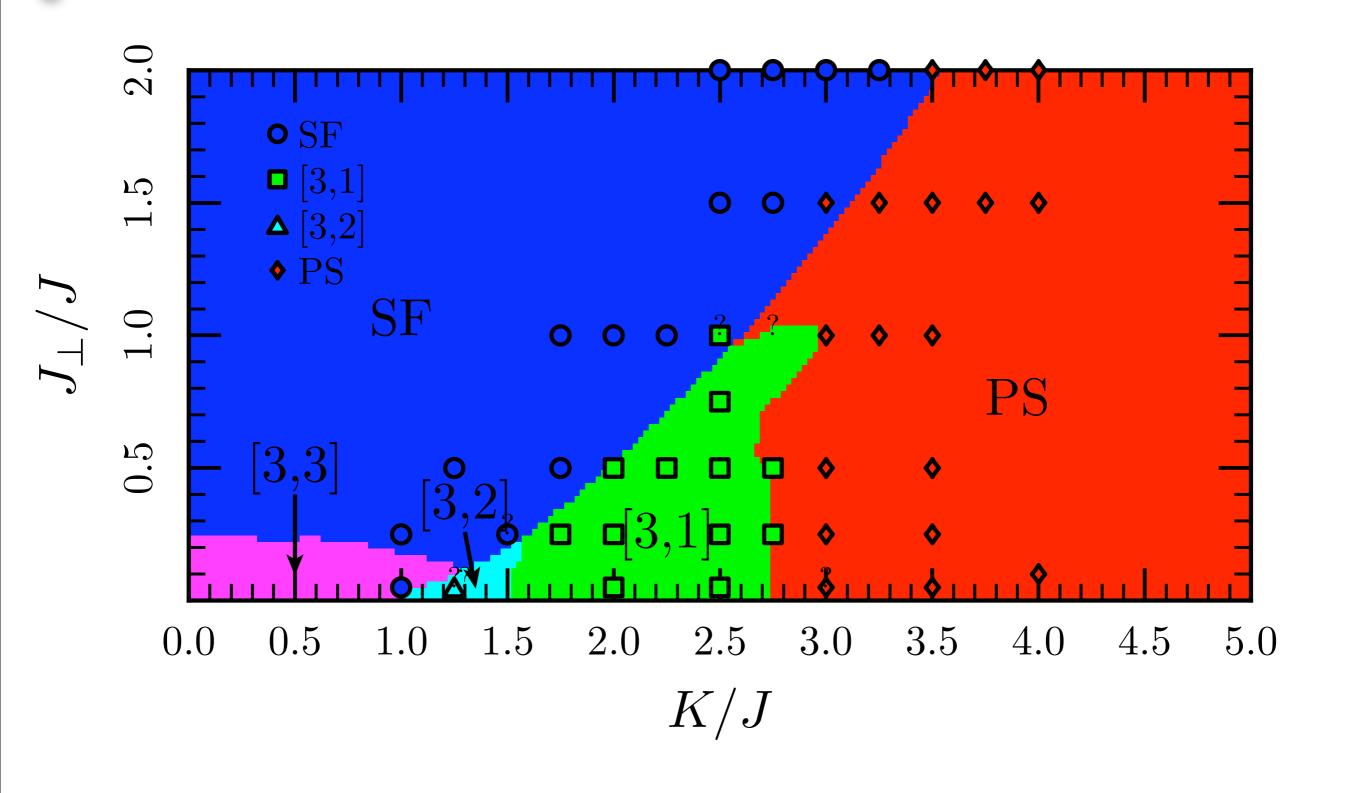
- □ Simple extension of DBL[2,1] on 2 legs
- \Box d_2 acts like a Jordan-Wigner transformation
- □ Only exists for v < 1/3 in rather small region of phase diagram

Still, impressive DMRG-VMC comparisons

$$\nu = 1/4: \ K/J = 2.25, J_{\perp}/J = 0.5$$

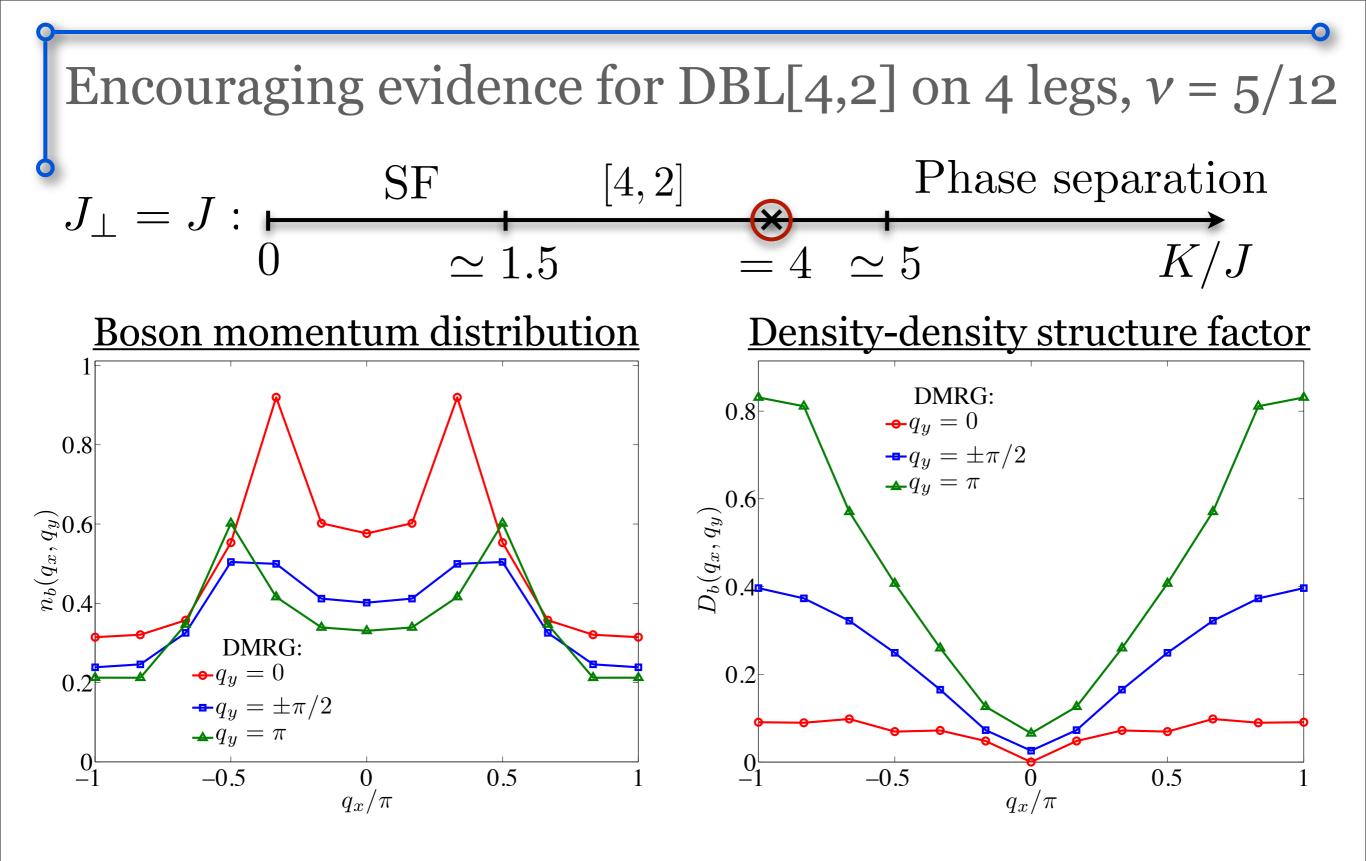


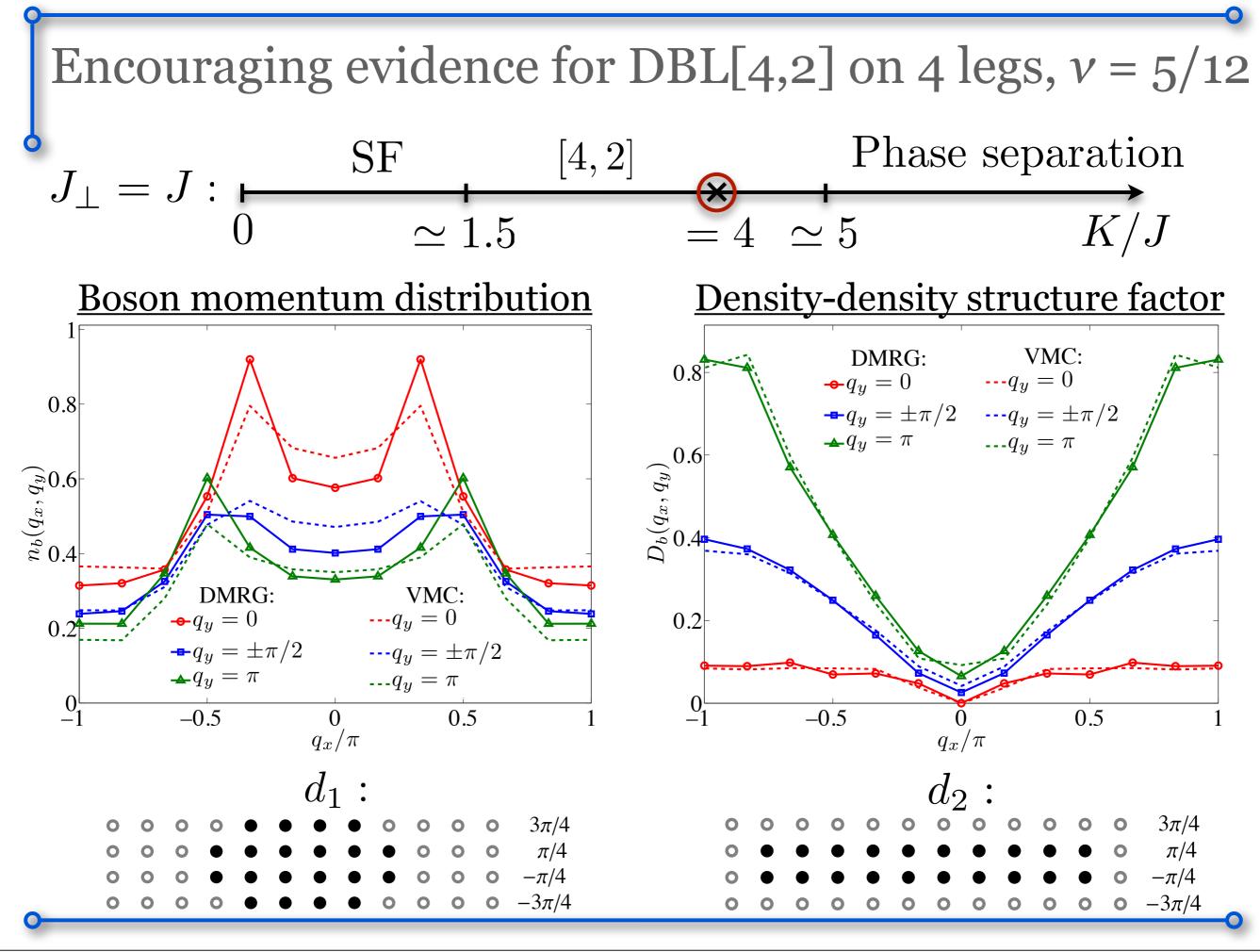
Full 3-leg, 1/4-filling phase diagram (DMRG and VMC)



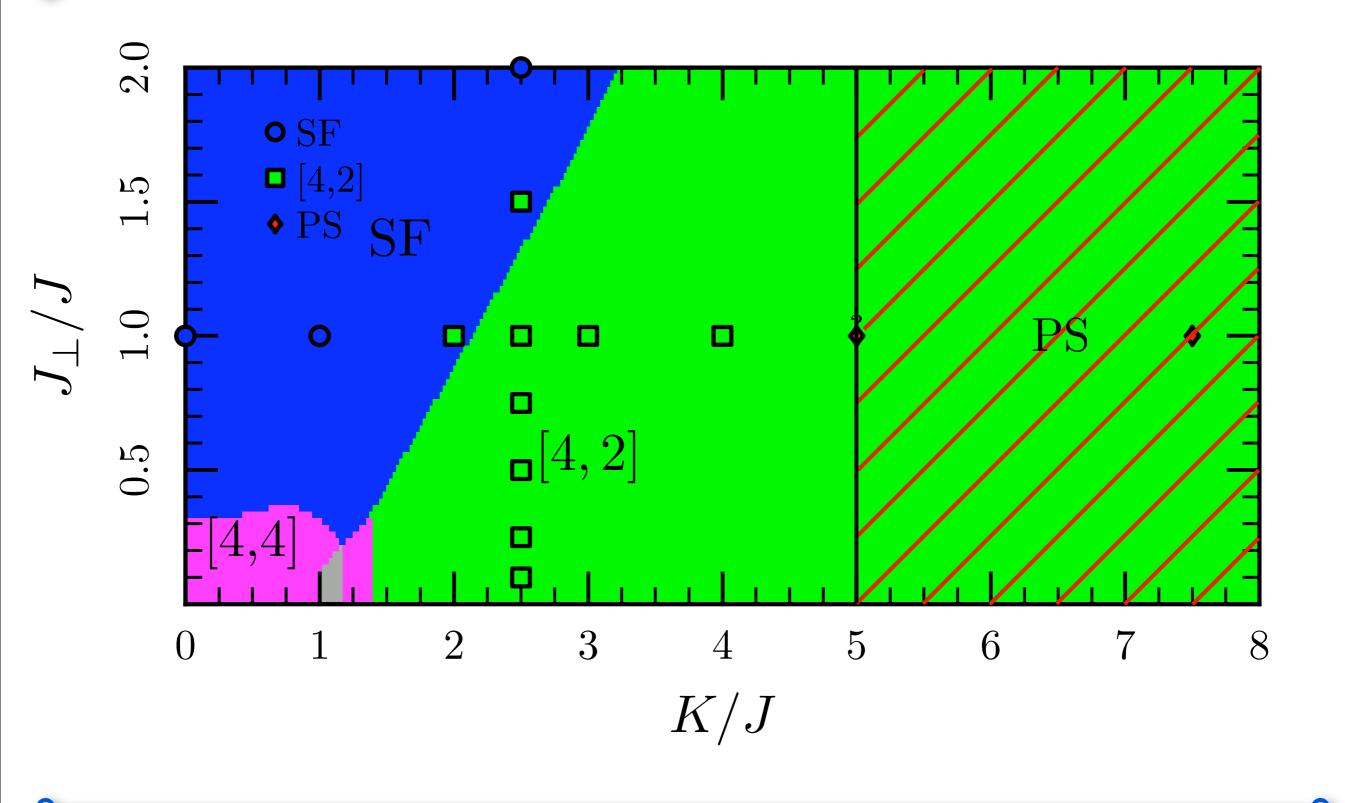
What about v > 1/3 on 3 legs?

- DBL[3,2] seems to be unstable in *J*-*K* model
 - □ Very stable compressible, non-DBL phase at v = 1/2
 - Quasi-condensate at zero momentum?
 - Static order in rung currents at ${f q}=(\pm\pi,\pm2\pi/3)$
 - □ Some evidence for another variant of DBL[3,1] at v = 5/12
 - d_2 has one *fully* filled band and one partially filled band
 - Only exists at small J_{\perp}
- **4** Main goals for approaching 2D
 - □ Find stable metallic DBL[m, n] phase with n > 1
 - □ Find DBL phase with $c > L_y$
 - □ NB: DBL[3,1] has n = 1 and "only" $c = 3 = L_y$ gapless modes
 - On to 4 legs!





Preliminary 4-leg, 5/12-filling phase diagram



31

A few random remarks

4 No conventional Jordan-Wigner description of DBL[4,2]

- $\downarrow c = 5 > L_y$ gapless modes in DBL[4,2]
 - Impossible to obtain via entanglement entropy in DMRG with PBC
 May be doable with OBC

4 DBL[3,2] on 3 legs with *anti-periodic* BCs in *y* direction?

- □ From DBL[4,2] structure, (PBC for d_1) x (ABC for d_2) seems natural
- Gapless Mott insulator on 4 legs?
 - □ System phase separates right out of superfluid at v = 1/4 filling
 - DBL[3,0] special for $1/L_y$ gapless Mott insulators
 - □ Situation at v = 1/2 on 4 legs still unclear

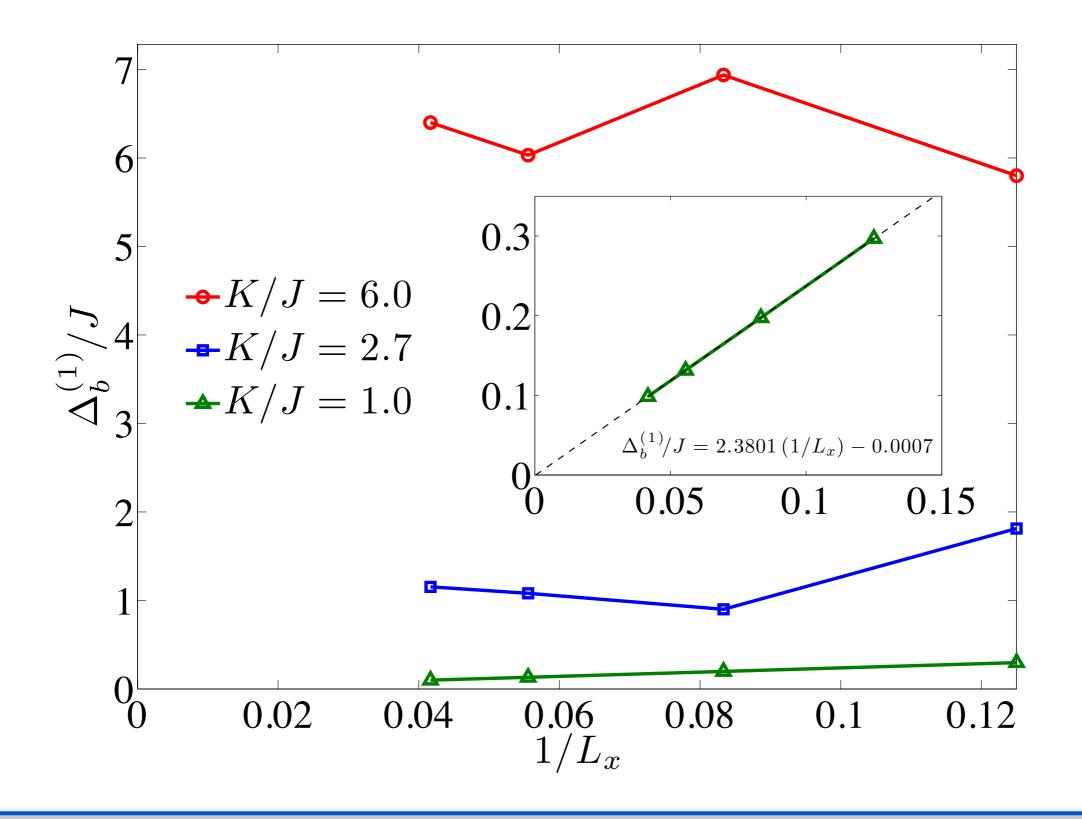
Summary

4 Study of the frustrated *J*-*K* model on the 3- and 4-leg ladder

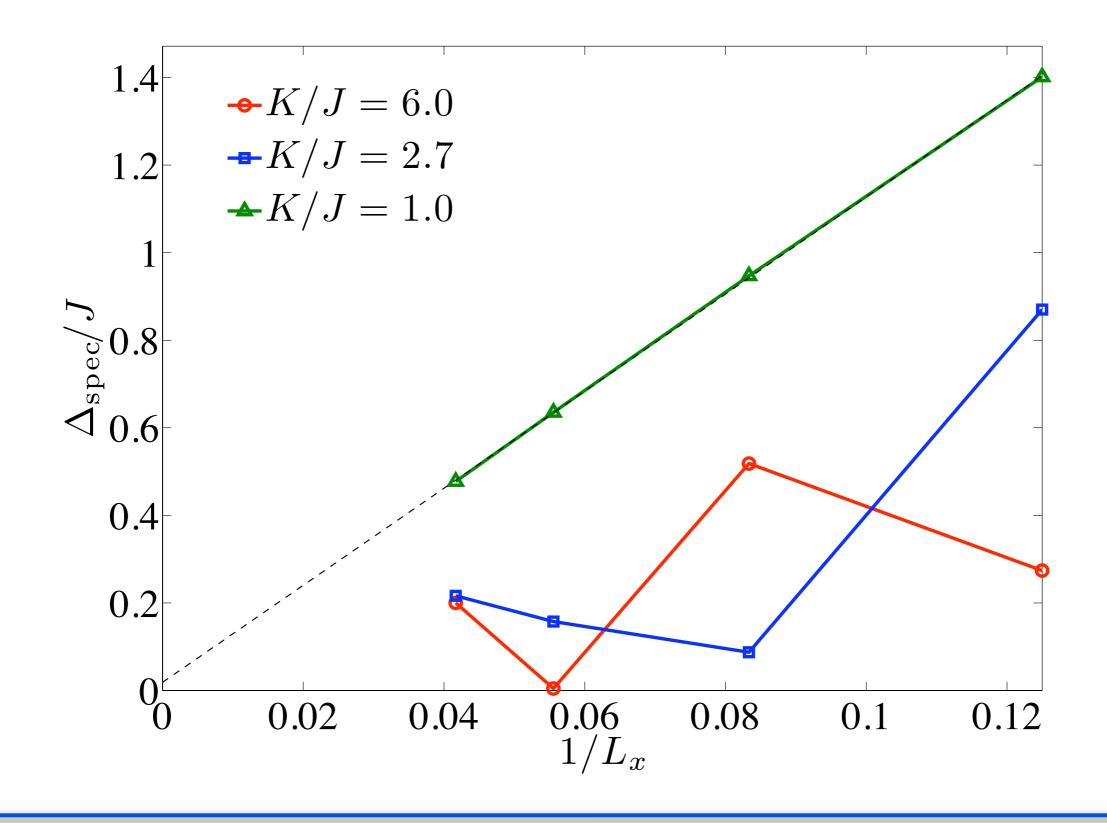
- Pushing towards 2D
- □ Main tools = DMRG and VMC
- Gapless Mott insulator on the 3-leg ladder
 - □ Incompressible phase
 - Power law density-density correlations at incommensurate wave vectors
 - □ Fundamentally quasi-1D phase with 2 gapless modes
- Gapless Bose metals on 3- and 4-leg ladders
 - □ DBL[3,1] phase on 3 legs, but no DBL[3,2]
 - Evidence for DBL[4,2] phase on 4 legs
 - More gapless modes than number of legs
 - Encouraging for existence of the 2D *d*-wave Bose metal

That's all!

One-boson gap: [3,0] and SF

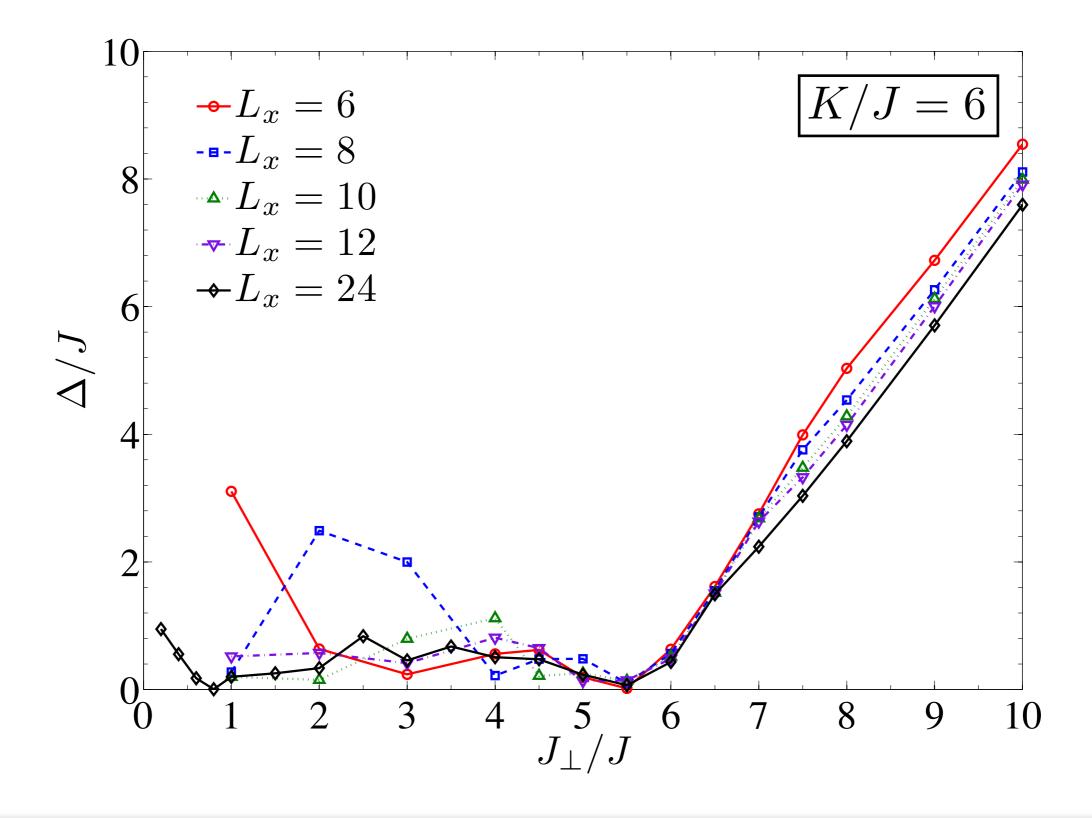


Spectral gap at fixed boson number: [3,0] and SF

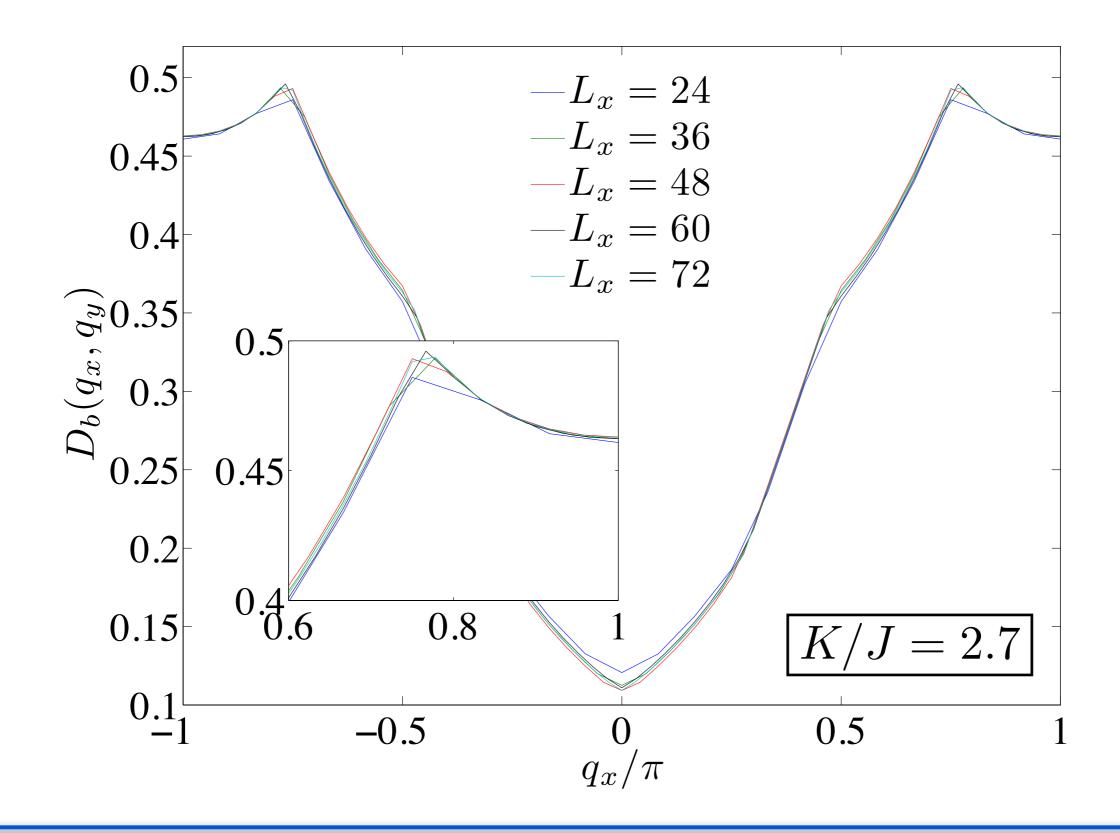


36

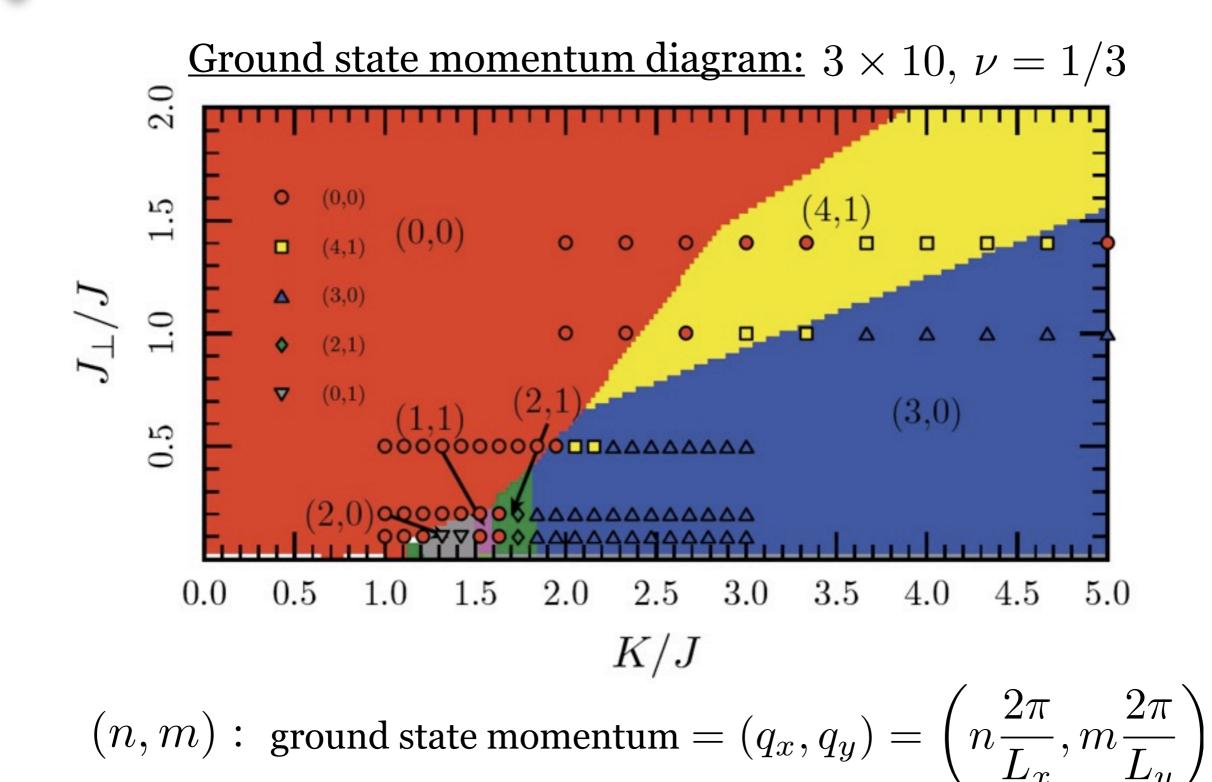
Spectral gap across [3,0] to [0,0] transition



Dependence of [3,0]'s Bose surfaces on L_x (OBC)



Ground state momenta: VMC vs. ED



39

Precise definitions of measures

4 Boson momentum distribution

$$\square n_b(\mathbf{q}) \equiv \frac{1}{L_x L_y} \sum_{\mathbf{r}, \mathbf{r}'} \langle \hat{b}_{\mathbf{r}}^{\dagger} \hat{b}_{\mathbf{r}'} \rangle e^{i\mathbf{q} \cdot (\mathbf{r} - \mathbf{r}')}$$

$$\square \mathbf{I}_x \mathbf{D}_y = \text{dim}_{\mathbf{r}} \text{dim}_{\mathbf{r}} e^{i\mathbf{q} \cdot (\mathbf{r} - \mathbf{r}')}$$

□ In DBL, singularities at $k_{F1}^{(\kappa_y)} \pm k_{F2}^{(\kappa_y)}$

↓ Density-density structure factor
□ D_b(q) ≡ 1/(L_xL_y) ∑_{r,r'} ⟨(n̂_r - ν)(n̂_{r'} - ν)⟩e^{iq·(r-r')}
□ In DBL, singularities at "2k_F" : k^(ky)_{Fα} ± k^(k'y)_{Fα}
↓ von Neumann entanglement entropy

 $\Box S^{\mathrm{vN}}(x) \equiv -\mathrm{Tr}\left(\hat{\rho}_A \ln \hat{\rho}_A\right)$