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Outline

Introduction to the “d-wave Bose liquid”

Where, how, and why?

Gapless Mott insulator on the 3-leg ladder
! arXiv:1008.4105

Gapless Bose metals on 3- and 4-leg ladders
! Still in progress...
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System in mind
! Itinerant hard-core bosons
! 2D square lattice

Important properties
! d-wave correlations (nontrivial signs)
! No broken symmetries
! Gapless excitations on “Bose surfaces” in 

momentum space

Construction
! Gutzwiller projected product of filled 

Fermi seas (FFSs):

Overview:  d-wave Bose liquid (DBL)

Slater determinants with FFSs compressed in x and y directionsMotrunich and MPAF,
PRB 75, 235116 (2007)
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Ψb(r1, r2, . . . , rN ) = Ψd1(r1, r2, . . . , rN )Ψd2(r1, r2, . . . , rN )
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Projected Fermi sea wave functions

Gauge theory description:  
! d1 and d2 hopping on square lattice coupled to U(1) gauge field

! Strong coupling limit realizes 

Variational wave functions and gauge theory

d2

d1
ky

kx

Ψb = PG( )

b̂† = d̂†1d̂
†
2

Gutzwiller projection:

PG : nd1(r) = nd2(r) ∀ r
ndα ∈ {0, 1}

b̂†b̂ = d̂†1d̂1 = d̂†2d̂2
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Sign structure (why “d-wave”?)

 

Expect for 2-particle correlations: 

Φb(r) ∼ (x− xi)(y − yi), where Φb(r) ≡ Ψb(r, r2, . . . , rN )

sign[Φb(r)] =

Test particle

+ −

+−

Ψb(r1, . . . , rN ) = Ψd1(r1, . . . , rN )Ψd2(r1, . . . , rN ) = (det)x × (det)y
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Result of oscillatory power law correlations in real space

Boson Green’s function:

!  Mean-field: 

! Singularities in boson momentum distribution at

So what are these “Bose surfaces”?

Gb(r) ≡ �b̂†rb̂0�
GMF

b (r) = GMF
d1

(r)GMF
d2

(r)/ν

kF1(r̂)± kF2(r̂)

kF1 + kF2

kF1 − kF2

2kF2

qxqx

qy

d2

d1

kx

ky

GMF
dα

(r) ≈ 1
21/2π3/2

cos(kFα · r− 3π/4)

c1/2
α |r|3/2

, kFα = kFα(r̂)
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kF1 + kF2

kF1 − kF2

2kF2

qxqx

qy qy

Another singular surface ...

Density-density correlation function:

! Mean-field:

! Singularities in density-density structure factor at 

DMF
dα

(r) = −|GMF
dα

(r)|2 ∼ −1 + cos[2kFα · r− 3π/2]
cα|r|3

d2

d1

kx

ky

2kF1

DMF
b (r) ≈ 1

2
[DMF

d1
(r) + DMF

d2
(r)]

2kFα(r̂)

Db(r) ≡ �(n̂r − ν)(n̂0 − ν)�, ν = filling factor
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Outline

Introduction to the “d-wave Bose liquid”

Where, how, and why?

Gapless Mott insulator on the 3-leg ladder
! arXiv:1008.4105

Gapless Bose metals on 3- and 4-leg ladders
! Still in progress...
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Philippe Corboz, CompQCM, 12/02/2010:
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Philippe Corboz, CompQCM, 12/02/2010:
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Frustrated 4-site ring-exchange “J-K model”

! Strong coupling limit of gauge theory for DBL

! Anisotropic hopping of two fermion species + Gutzwiller projection

Unfrustrated (K < 0) case known from QMC
! Sandvik et al., PRL (2002); Melko et al., PRB Rapid (2004)

Where (to look)?

ĤJK = −J

�

r

(b̂†rb̂r+x̂ + h.c.)− J⊥
�

r

(b̂†rb̂r+ŷ + h.c.)

+K
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(b̂†rb̂r+x̂b̂†r+x̂+ŷb̂r+ŷ + h.c.)

1
2

2
1

1
2

2
1

1
2

2
1

K

10



How (to access)?
Sign problem ...
! But ... DBL has singular surfaces in momentum space

! So ... can controllably be studied on the N-leg ladder

Methods of attack:  DMRG, VMC, ED, bosonization

2-leg ladder already thoroughly investigated
! Sheng et al., PRB 78, 054520 (2008)

−π
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0

qx

qy
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Why (should anyone care)?

DBL is very much a non-Fermi liquid
! New uncondensed (non-superfluid) phase of itinerant bosons

! Lack of long-lived quasiparticles

! DBL as piece of “d-wave metal” for model wave function of the  
strange metal in high-Tc ?  (See MPAF’s talks)

Cold atom realizations?
! Two species of fermions + anisotropic hopping + attraction

- Feiguin and MPAF, PRL (2009); Feiguin and MPAF, arXiv:1007.5251

! Engineer ring-exchange Hamiltonian [Buchler et al., PRL (2005)]

U(1) limit of exotic state of SU(2) spins in Zeeman field?

ΨNFL = PG[ΨFF
f ×ΨDBL

b ]
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Outline

Introduction to the “d-wave Bose liquid”

Where, how, and why?

Gapless Mott insulator on the 3-leg ladder
! arXiv:1008.4105

Gapless Bose metals on 3- and 4-leg ladders
! Still in progress...
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DBL wave functions on the 3-leg ladder

Wave function properties
! Depends only on filled momenta, not dispersions
! Oscillatory power law correlations:  fingerprints of “Bose surfaces”

- Fermi points of partons → “Bose points”

Notation:  DBL[n, m]
! n, m partially filled d1, d2 bands
! Example above:  DBL[3,1]
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DBL[3,0]:  Exotic gapless Bose insulator
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×DBL[3, 0] = PG( )

3 partially filled d1 bands (metal) 1 fully filled d2 band (insulator)

Filling factor:  ν = 1/3 = 1/Ly

Features
! Filled d2  band → exactly 1 boson per rung (1D insulator)

! Still 3 - 1 = 2 gapless 1D modes
!           wave vectors from d1 visible in boson density-density structure factor2kF
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J⊥

x

y

K

J

J⊥

First focus on case
! One boson per rung

! Maps onto 1D XY model in an in-plane field

! Phase diagram

Aside:  What about the 2-leg ladder at 1/2 filling?

J = 0

0 J⊥/K

XY Canted Magnet Paramagnet

(Rung Currents) (Rung Mott)

ĤXY = K

�

i

(σ̂+
i σ̂

−
i+1 + h.c.)− J⊥

�

i

σ̂
x
i
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Full 2-leg, 1/2-filling phase diagram (DMRG)

No exotic gapless insulating phase (except boring “[2,0]” at              ) ...J⊥ = 0
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Full 2-leg, 1/2-filling phase diagram (DMRG)

No exotic gapless insulating phase (except boring “[2,0]” at              ) ...J⊥ = 0

But ... DBL[3,0] is a stable phase of the 3-leg J-K model
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DMRG:

Momentum space correlators:  Superfluid

Density-density structure factor

nb(q) ≡ �b̂†qb̂q� :
• Bose condensate at 
• 1D Quasi-ODLRO

•        dependence around  
   at 

Boson momentum distribution

Db(q) ≡ �δn̂qδn̂−q� :
q = 0 |qx| qx = 0

qy = 0

K/J0

SF [3,0]
J⊥ = J :

= 1 � 2.2
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Momentum space correlators:  DBL[3,0]
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Density-density structure factor

• Singularites at           wave vectors 
• Signature of state’s “gaplessness”

2kF

nb(q) ≡ �b̂†qb̂q� :
• Featureless due to filled band
• Signature of 1D insulator
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Boson momentum distribution

Db(q) ≡ �δn̂qδn̂−q� :
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J⊥ = J :

= 3� 2.2
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Momentum space correlators:  DBL[3,0]
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Density-density structure factor

• Singularites at           wave vectors 
• Signature of state’s “gaplessness”

2kF

nb(q) ≡ �b̂†qb̂q� :
• Featureless due to filled band
• Signature of 1D insulator
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Evolution of peaks consistent with different d1 band fillings

Evolution of “Bose surfaces”
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Entropy vs. subsystem length

Evolution of entanglement entropy

Effective central charge, c, from scaling of entanglement entropy:

c � # of 1D gapless modesSvN(x) =
c
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Number fluctuations vs. subsystem length

Saturates to a constant:
1D insulator!

Fits well to LL/CFT scaling form:

g ln
�
Lx

π
sin

�
πx

Lx

��
+ B

Scaling of bipartite number fluctuations

leftmost contiguous block of size F(x) ≡ �(N̂A − �N̂A�)2�, A = 3x = Lyx

Cf. recent work relating bipartite entanglement and fluctuations in 1D:
Song, Rachel, and Le Hur, PRB 82, 012405 (2010)

g ∝ compressibility

g → 0
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Full 3-leg, 1/3-filling phase diagram (DMRG and VMC)

Rung Mott = conventional 1D Mott insulator:

J⊥ = J

DBL[3, 0]
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Extensions of DBL[3,0] to 2D

Relative (nephew?) of “extremal DLBL” in 2D case

Quasi-1D
! DBL[N,0] on the N-leg ladder at ν = m/N ?

Quasi-2D
! Gapless Bose insulator on an N-layered system at filling ν = m/N ?

Substantial ring exchange here:
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Outline

Introduction to the “d-wave Bose liquid”

Where, how, and why?

Gapless Mott insulator on the 3-leg ladder
! arXiv:1008.4105

Gapless Bose metals on 3- and 4-leg ladders
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Evidence for d-wave Bose metals on 3 legs?

Yes ... DBL[3,1] for ν < 1/3 (hole-doped DBL[3,0]):

But ...
! Simple extension of DBL[2,1] on 2 legs

! d2 acts like a Jordan-Wigner transformation

! Only exists for ν < 1/3 in rather small region of phase diagram
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Boson momentum distribution
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d2 :

Still, impressive DMRG-VMC comparisons

ν = 1/4 : K/J = 2.25, J⊥/J = 0.5
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Full 3-leg, 1/4-filling phase diagram (DMRG and VMC)
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What about ν > 1/3 on 3 legs?
DBL[3,2] seems to be unstable in J-K model
! Very stable compressible, non-DBL phase at ν = 1/2

- Quasi-condensate at zero momentum?

- Static order in rung currents at

! Some evidence for another variant of DBL[3,1] at ν = 5/12

- d2 has one fully filled band and one partially filled band

- Only exists at small 

Main goals for approaching 2D
! Find stable metallic DBL[m, n] phase with n > 1

! Find DBL phase with c > Ly

! NB:  DBL[3,1] has n = 1 and “only” c = 3 = Ly  gapless modes

! On to 4 legs!

q = (±π,±2π/3)

J⊥
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Encouraging evidence for DBL[4,2] on 4 legs, ν = 5/12
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30



1 0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

qx/π

n
b
(q

x
,q

y
)

 

 

qy = 0
qy = ±π/2
qy = π

DMRG:

 

 

Encouraging evidence for DBL[4,2] on 4 legs, ν = 5/12
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Preliminary 4-leg, 5/12-filling phase diagram
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A few random remarks

No conventional Jordan-Wigner description of DBL[4,2]

c = 5 > Ly gapless modes in DBL[4,2]
! Impossible to obtain via entanglement entropy in DMRG with PBC

! May be doable with OBC

DBL[3,2] on 3 legs with anti-periodic BCs in y direction?
! From DBL[4,2] structure, (PBC for d1) x (ABC for d2) seems natural

Gapless Mott insulator on 4 legs?
! System phase separates right out of superfluid at ν = 1/4 filling

- DBL[3,0] special for 1/Ly gapless Mott insulators

! Situation at ν = 1/2 on 4 legs still unclear
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Summary
Study of the frustrated J-K model on the 3- and 4-leg ladder

! Pushing towards 2D

! Main tools = DMRG and VMC

Gapless Mott insulator on the 3-leg ladder

! Incompressible phase

! Power law density-density correlations at incommensurate wave vectors

! Fundamentally quasi-1D phase with 2 gapless modes

Gapless Bose metals on 3- and 4-leg ladders

! DBL[3,1] phase on 3 legs, but no DBL[3,2]

! Evidence for DBL[4,2] phase on 4 legs

- More gapless modes than number of legs

- Encouraging for existence of the 2D d-wave Bose metal
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That’s all!
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Spectral gap at fixed boson number:  [3,0] and SF
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Spectral gap across [3,0] to [0,0] transition
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Dependence of [3,0]’s Bose surfaces on Lx (OBC)
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Ground state momenta:  VMC vs. ED

(n, m) : ground state momentum  = (qx, qy) =
�

n
2π

Lx
, m

2π

Ly

�

Ground state momentum diagram: 3× 10, ν = 1/3
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Boson momentum distribution

!  

! In DBL, singularities at 

Density-density structure factor

!  

! In DBL, singularities at 

von Neumann entanglement entropy

!

nb(q) ≡ 1
LxLy

�

r,r�

�b̂†rb̂r��eiq·(r−r�)

Precise definitions of measures

k
(ky)
F1 ± k

(k�
y)

F2

“2kF ” : k
(ky)
Fα ± k

(k�
y)

Fα

SvN(x) ≡ −Tr (ρ̂A ln ρ̂A)

Db(q) ≡ 1
LxLy

�

r,r�

�(n̂r − ν)(n̂r� − ν)�eiq·(r−r�)
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