On intrinsic and emergent gauge structures:
from irrational charge to deconfinement
diagnostics
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Outline

Introduction
* emergent gauge structures and spin liquids

Intrinsic and emergent gauge charges
* fractional, and irrational, charge

Diagnosing deconfinement
e equal-time diagnostice (‘non-local order parameter’)
* application to some known instances



Exotic phases with emergent gauge fields

No definition (necessary and sufficient criteria) available which
covers all cases of interest and is reasonable

* low-energy physics: emergent weakly fluctuating gauge field

gapped spin liquids
gapless spin liquids
spin ice

guantum dimer models

quantum Hall effect



Wishlist

Microscopic constrained
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(spin)model subspace ﬂ
\ (e.g. dimers)
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(non—local) deconfined

diagnostic "order = — >  phase
parameter” (e.g. 7, liquid)




Where emergent gauge fields can appear

Constraints on energetics or Hilbert space

* ‘exclusive’ singlet formation = hardcore
dimer constraint

* double-occupancy constraint  oemmg

e slave-particle constraint: f7f + b0 = 1
Constraints can give rise to Gauss’ law / gauge
transformations

* In some cases, explicit gauge construction
based on lattice model available

e often appears when considering fluctuati-
ons around mean-field saddle point




Emergent Z, gauge theory: the quantum dimer model

emergent Z, gauge field + deconfined (topological) phase

* topological order and quantum number fractionalisation go
hand in hand (e.g. spin charge separation)

* no local symmetry breaking
Existence of various gapped liquids well established
e gapped 2, liquid in d > 2; gapless U(1) liquid in d > 3

Reliable construction based on SU(2) spins is messy



Quantum number fractionalisation : d = 1

solitons (polyacetylene) in dimerised chain su,Schrieffer,Heeger

A e—o e—o e—o o

B o—e o—e o—e

removing one electron creates two ‘unpaired sites’
* pair can be separated at finite energy cost ("deconfinement”)
* in presence of sublattice symmetry, each soliton has charge

Q =¢e/2



Quantum number fractionalisation : d = 1

solitons (polyacetylene) in dimerised chain su,Schrieffer,Heeger

A e—o e—o e—o o

B o—e o—e o—e

removing one electron creates two ‘unpaired sites’
* pair can be separated at finite energy cost ("deconfinement”)
* in presence of sublattice symmetry, each soliton has charge

Q =¢e/2

* Without sublattice symmetry, know only: Q4 + Qg =€

Brazovskii; Rice,Mele

= (4 p can be irrational



Mechanism: inverting strings of (oriented!) dipoles

P Lo 1 1 1
Vir)== [ dr- = B
() CL/A " v|7°—7°’| Q<|T—7“a| ‘7“—7“1)|)
—<—
Potential due to a string of dipoles + + > + +
B A
e same as two charges at end of string Ly A
* () = P/a = moment per unit length AE A+B + +
B

* reversing string of dipoles creates
(tunable) charges



Mechanism: inverting strings of (oriented!) dipoles

P - = 1 1 1
Vir)y==— [ dr - = -
0= | = =
—<
Potential due to a string of dipoles * + > * *
B A
e same as two charges at end of string = [y al
* () = P/a = moment per unit length AE t Y A
e reversing string of dipoles creates -
(tunable) charges * * S + *
e works both for d =1 and d > 2 —~ < <
e Examples: several models; (spin)ice " < ¢ !



Emergent vs. intrinsic charge

Intrinsic charge

* is almost accidental
e can be irrational, ie not a sharp quantum number

» dipoles not only mechanism, cf. magnetoelectric effect znang
Emergent charge
e for cases of irrational charge, have e.g. sublattice index

e more ‘fundamental’?
Uses as diagnostic

* Electric (intrinsic) charge not necessarily sharp



Diagnosing topological order/deconfinement

Diagnostic should satisfy:
* require knowledge of ground or Gibbs state only
* be independent of Hamiltonian
* work in presence of dynamical matter / at finite temperature

—> Need non-local “order parameter”:
* generalisation of Wilson loop  Fredenhagen + Marcu; Huse + Leibler
e measures effective ‘line tension’

Apply to some known phase diagrams



Related work

Entanglement entropy Levin-wen;Kitaev-Preskill

* (subdominant) term signals topological nature of phase
(d=2)

* no simple interpretation in terms of correlations

Wilson loop “zero law”  Hastings-Wen

* “undress” wavefunction to revert to ideal strong-coupling
point

* construction depends on Hamiltonian



What's hard about diagnosing deconfinement?

No local order parameter wegner

* Wilson loop area vs. perimeter law indicates phase transition

Example: (pure) Z, gauge theory
So =K ) ocoooc = Zy x Tripn ][ [1 + (tanh K)oooo)|
0 L

* theory of surfaces
* Wilson loop diagnoses absence/presence of surface tension

(W) = <H0>
0



Wilson loop, and theory of surfaces with edges

Area/perimeter law diagnose surface tension:

(W) =Trim WH + (tanh K)oooo|| /Z 5




Wilson loop, and theory of surfaces with edges

Area/perimeter law diagnose surface tension:

(W) =Trim WH + (tanh K)ooool| /Z

Not diagnhostic when dynamical matter is added L

ooz [P
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Wilson loop, and theory of surfaces with edges

Area/perimeter law diagnose surface tension:

(W) =Trim WH + (tanh K)ooool| /Z

Not diagnhostic when dynamical matter is added L

ooz [P

7 ZO-H[lJr(tath TOT]

Always perimeter law (cf. breaking of ® . '/U\‘

flux string): (W) = e=oF .~ o .~ o /\J\,

—> need to diagnose ‘underlying surface tension’



The Huse-Leibler horseshoe: effective line tension
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The Fredenhagen-Marcu order parameter

W1/2(L) u -

W(L)
<Ts(Hz€cl/2 01)Ts)
\/<Hle(] Jl>

This diagnoses deconfinement

0  deconfined phase
0  otherwise



Space-time inerpretations
Equal-time diagnostic

R(L) = Mazd) _ (Girilhiec, 707919 / // /2
VW) V{GITliec oF1G)

Fredenhagen-Marcu order parameter

R(L) = <280 |s) = 7575 Tliec,,, 07 (<T/2)|G) o

Spinon-delocalisation diagnostic

6_(Edefect +Espinon)T ‘ ‘

\/e_ (Edefect +Edefect )T

R(L) =




Some small print

Finite temperature topological order

Senthil+Fisher;Nussinov+Ortiz;Castelnovo+Chamon,KG et al.

* Ind = 3 (but not in d = 2), topological order persists to finite
temperature for 2,

Fluctuating constraints

* |n emergent context, unphysical sector is physical but
high-energy (no Lorentz invariance)

= not all orientations are equivalent



U(1) gauge theories with charge q matter rradxin-shenker

-5 =K Zp Hleap Ui(l) + JZZ;S,S’E@Z TSUZTS’ +c.C.
Fields now of form U = exp(iA;;), 7 = exp(1¢;); A, ¢ € |0, 27 (.

Wq(L) - <H U[q(l>>

leC
(§(Tico, , U2y )70

e Up))




U(1) gauge theories with charge q matter rradxin-shenker

-5 =K Zp HlE@p Ulv(l) + JZZ;S,S’E@Z TSUZTS’ +c.C.
Fields now of form U = exp(iA;;), 7 = exp(1¢;); A, ¢ € |0, 27 (.

Higgs

Wq(L) - <H Uﬁl)>

leC
(1§ (Tliec , Ufy) 7o)

fined
\/<HZEC U[q(l)» confine

g = 1: confined = Higgs



U(1) gauge theories with charge q matter rradxin-shenker

—-5S=K Z Hleﬁp 10 + JZZ ;8,8"€0l TSUZTS +c.C.
Fields now of form U = exp(i4;;), 7 = exp(ig;); A, ¢ € [0, 27 (.

Higgs, Z, deconfined >
confined
RA (0) #0
wuL) = (Juz) > (o9) =
leC J)
; q Ry (o0) =0
B (7, (HleC1/2 U[l )Ts) Wy ~e L
R,(L) = e
JTiec Usy)
deconfined 0
0 K o0

g = 1: confined = Higgs ; ¢ = 2: R,, W, act as diagnostic



Gauge theories for quantum magnets

Wilson loop (in dimer variables, 0. = +1): W5 = o0 070 ---

In deconfined phase, |¢) ~ (1/N.) > |c)
* Only configurations with appropriate
dimerisation contribute

* amounts to restricting dimer configuration in
volume L¢ in gapped case

= perimeter law W ~ exp(—¢£ L)




Gauge theories for quantum magnets

Wilson loop (in dimer variables, 0. = +1): W5 = o0 070 ---

In deconfined phase, |¢) ~ (1/N.) > |c)
* Only configurations with appropriate
dimerisation contribute

* amounts to restricting dimer configuration in
volume L¢ in gapped case

= perimeter law W ~ exp(—¢£ L)

e With gapped spinful monomers Balents et al.
(‘spinons’, 7, = £1) :
W fails but R should work

e full SU(2) case: work in progress




Conclusions and outlook

Gauge theories from a condensed matter viewpoint

* origin and occurrences

* emergent vs. intrinsic charges

* irrational charge
Diagnostics in the presence of dynamical matter

* generalisation of Wilson loop, R(L)

e application to examples: U(1) gauge theory; QDM
Work in progress

e SU(2) magnets

* broader class of gauge theories



