
General Relation between 
Entanglement and Edge 

Theory in Topological States 

Xiao-Liang Qi 
Stanford University 
KITP, Dec. 14, 2010 
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and low energy behavior of topological states 
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• Quantum entanglement is the purely 
quantum mechanical “correlation” 
between two parts of a quantum 
system.  

• The state of a quantum system 
entangled with another system is 
described by the density matrix 

• The entanglement between A and B 
subsystems is completely determined 
by the eigenvalues of the density 
matrix 

• Von Neumann entropy 
S = −  𝜆𝑛log𝜆𝑛𝑛  

 

Quantum Entanglement 
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• Quantum entanglement in many-body systems 
provides a new way to characterize the correlation 
and orders in many-body systems  

• Example: SA=const. for gapped 1d system, and 

𝑆𝐴 =
𝑐

3
log 𝑙/𝑎 for gapless (critical) system 

• More low energy states, more entanglement 

Quantum Entanglement in Many-Body Systems 

𝑙 
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 gapped  

 gapless  

Holzhey et al, Nucl. Phys. B424, 443 (1994). 
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• Topological states of matter are gapped 
states which cannot be adiabatically 
deformed to a trivial state while 
preserving the locality of the 
Hamiltonian.  

• Topological states cannot be 
characterized by symmetry breaking and 
can be characterized by topological 
properties, such as ground state 
degeneracy (on a manifold without 
boundary) and/or topological edge 
states (on a manifold with boundary). 

• Example: Quantum Hall States (von Klitzing 
1980, Laughlin 1981, Tsui 1982, Laughlin 1983) 

• Chiral edge states protected by bulk 
Chern number (Thouless et al 1982, Niu et al 1983, 
Avron&Seiler 1983) 

Topological states of matter 
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• Another Example: Toric code model, or Z2 gauge theory 
(Kitaev 2003, Wen 2003). The ground state is a “condensate” of 
unoriented loops. 
 

 

 

 

 

 

 

 

• 4-fold Ground state degeneracy on torus 

Topological states of matter 

𝐺 =  

closed loops

 



• One can probe the topological properties of a given 
ground state by studying its entanglement properties. 

• Example: Topological entanglement entropy. (Kitaev&Preskill 

2006, Levin&Wen 2006) 

• 𝑆 = 𝛼𝐿 − 𝑆𝑡𝑜𝑝𝑜 with 𝑆𝑡𝑜𝑝𝑜 = log  𝑑𝑖
2

𝑖  

Entanglement and topological properties  

A 

B 

Toric code model: S=log W with W the 
possible configurations on the boundary. 
For N links on the boundary 

 

The -1 comes from the topological 
“Gauss law” constraint---the loops are 
closed 



• Topological entanglement entropy provides a 
characteristics of quantum entanglement in topological 
states, but it does not contain sufficient information to 
distinguish different topological states. Different states 
may have the same topological entropy. 

• Complete information on quantum entanglement is 
encoded in the reduced density matrix 

 

 

• The “entanglement Hamiltonian” is defined as 
𝐻𝐸 = −log 𝜌𝐴 which plays the role of 𝛽𝐻 in 
thermodynamic systems. The spectrum of 𝐻𝐸   is named 
as “entanglement spectrum”. (Li&Haldane PRL 2008) 

𝜌𝐴 =  𝜆𝑛|𝑛⟩⟨𝑛|

𝑛

= 𝑒−𝐻𝐸 

Entanglement spectrum of topological states 



Entanglement spectrum of topological states 

• In some topological states, 𝐻𝐸  has 
been shown to be analogous to the 
physical Hamiltonian with open 
boundary.  

• Numerical results: on fractional 
quantum Hall system (Moore-Read 
state) (Li&Haldane PRL 2008) . Low-lying 
entanglement spectrum in a given 
topological sector is described by the 
same conformal field theory as the 
edge state (up to a constant energy 
shift). 

• Analytic results on the Topological 
equivalence between 𝐻𝐸  and 𝐻𝐴 in     
(1) noninteracting topological 
insulators (Turner et al 2010,  Fidkowski 2010);      
(2) the Kitaev model with non-Abelian 
(Ising) phase (Yao&Qi PRL 2010)  



• Physically, why is the entanglement 
spectrum qualitatively equivalent to 
the edge state spectrum? 

• Intuitive answer: 

• 1. (“Cut and glue”) The system with 
bipartition into A and B region can be 
considered as A and B regions with 
open boundary being glued together. 

• 2. (“Lowest energy states entangle 
most”) The lower is its energy, the 
more is a state entangled during the 
glue process with the other region. 

 

 

General relation between entanglement spectrum 
and edge state energy spectrum  



Relating the entanglement spectrum to edge state 
energy spectrum by “cut and glue” procedure 

A A 

B B 

A single cylinder with 
bipartition 

𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝐻𝑖𝑛𝑡 

Inter-edge tunneling 
𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝑟𝐻𝑖𝑛𝑡 

𝑟𝐻𝑖𝑛𝑡 

A 

B 

Open boundary 
 𝐻 = 𝐻𝐴 + 𝐻𝐵 

Edge states 
described by 

chiral CFT 

𝑟 = 1 “glue” 



• For small value of 𝑟, the coupling between A and B is 
reduced to the coupling between left and right moving 
edge states. Thus the problem of entanglement spectrum 
is reduced to the entanglement between left and right 
movers in the edge CFT induced by a relevant coupling  

Reducing the bulk problem to an edge CFT problem 

A 

B 
𝑟𝐻𝑖𝑛𝑡 ≃ 

𝐻 = 𝐻𝐿 + 𝐻𝑅 + 𝑟𝐻𝑖𝑛𝑡 

𝑟𝐻𝑖𝑛𝑡 

𝜌𝐴 ≃ 𝜌𝐿 = 𝑇𝑟𝑅|𝐺⟩⟨𝐺| 

𝑘 

𝐸𝑘 
𝑟 = 0 

𝑘 

𝐸𝑘 
𝑟 ≠ 0 

|𝐺⟩ 
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• The gapped ground state 𝐺  is not 
universal. 

• However, in RG flow, a generic gapped 
ground state 𝐺   flows to a universal 
conformal invariant RG fix point 𝐺0   

• 𝐺  and 𝐺0  are related by the 
extrapolation length 𝜏0 (Diehl 1986, 

Calabrese&Cardy 2006) 

Obtaining the entanglement spectrum from 
boundary conformal field theory 

𝑘 

𝐸𝑘 

|𝐺⟩ 
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𝑚 = ∞ 

|𝐺⟩ |𝐺0⟩ 

𝑚 𝜏0 

𝑂 𝑡 = 𝐺 𝑒𝑖𝐻𝑡𝑂 𝑒−𝑖𝐻𝑡 𝐺 ≃
1

𝑍
⟨𝐺0 𝑒𝑖𝐻𝑡−𝜏0𝐻 𝑂 𝑒−𝑖𝐻𝑡−𝜏0𝐻 𝐺0⟩ 

⇒ 𝐺 ≃
1

𝑍1/2 𝑒−𝜏0𝐻|𝐺0⟩ with 𝐻 = 𝐻𝐿 + 𝐻𝑅 the CFT 

Hamiltonian 



• The problem is very related to 
quantum quench problem studied 
by Calabrese and Cardy (2006, 2007) 

• When a relevant coupling is 
suddenly switched off, the time 
evolution of the intitial state 𝐺   is 
determined by relating 𝐺 ≃

𝑍−1/2𝑒−𝜏0𝐻|𝐺0⟩. Determining the 
density matrix 𝜌𝐿 is equivalent to 
determining all correlation 
functions of the left mover. 

Relation to the quantum quench problem 

𝑡 

𝐺   

(𝑟1, 𝑡) (𝑟2, 𝑡) 

𝑡 

𝐺   

(𝑟1, 𝑡) (𝑟2, 𝑡) 

𝜏0 
𝐺0   



• For a given CFT, the conformal invariant initial 
state |𝐺0⟩ can be obtained explicitly as linear 
superposition of Ishibashi states (Ishibashi 1987) 

 

 

• ℎ is determined by the representation of 
conformal symmetry. 𝑝 = 𝑛 + ℎ 2𝜋/𝐿 
determines the momentum eigenvalues. ℎ is 
determined by the boundary condition of the 
cylinder, which labels the topological spin of the 
topological quasi-particles. 

• Importantly, Ishibashi state is a maximally 
entangled state in the given subspace Vh labeled 
by the primary field ℎ. 

Ishibashi states and the entanglement spectrum 

|𝐺0ℎ⟩ =   𝑛, 𝑑ℎ 𝑛 𝐿 𝑛, 𝑑ℎ 𝑛 𝑅

𝑑ℎ(𝑛)𝑛=0,1,…

 

ℎ = ℎ𝑎 



• For a maximally entangled state, the reduced density 
matrix is proportional to identity, with maximal 
entropy, i.e., infinite temperature 

 

 

• Moreover, the action of any operator to the right 
subspace is equivalent to some operator on the left 
subspace.  

 

 

General relation between energy spectrum and 
entanglement spectrum 

𝜌𝐿0 = 𝑇𝑟𝑅|𝐺0ℎ⟩⟨𝐺0ℎ| =   𝑛, 𝑑ℎ 𝑛 𝐿⟨𝑛, 𝑑ℎ(𝑛)|𝐿
𝑑ℎ(𝑛)𝑛=0,1,…

 

𝑂𝑅 𝐺0ℎ = 𝑂  𝐿
𝑇 𝐺0ℎ  

𝐻𝑅 𝐺0ℎ = 𝐻𝐿 𝐺0ℎ  
⇒  𝐺ℎ = 𝑍−1/2𝑒−𝜏0(𝐻𝐿+𝐻𝑅) 𝐺0ℎ  
                =   𝑒−2𝜏0𝑣 𝑛+ℎ 2𝜋/𝐿 𝑛, 𝑑ℎ(𝑛) 𝐿 𝑛, 𝑑ℎ 𝑛 𝑅𝑑ℎ(𝑛)𝑛=0,1,..  



• The reduced density matrix of generic 
state 𝐺ℎ  can be obtained which is 
thermal with a finite temperature  

 

 

• Thus we have shown how the reduced 
density matrix of left-mover, i.e., A 
region, is a thermal density matrix with 
effective temperature 

 

    within a given conformal 
representation. 

 

General relation between energy spectrum and 
entanglement spectrum 

𝜌𝐿 = 𝑇𝑟𝑅|𝐺ℎ⟩⟨𝐺ℎ| =
1

𝑍
𝑒−4𝜏0𝐻𝐿 

𝑇eff = 1/4𝜏0 

𝜏0 

𝑇eff =
1

4𝜏0
 

𝑇0 = ∞ 𝐺0ℎ   

𝐺ℎ   



• As an explicit example, we study the free fermion 
edge states of integer quantum Hall state. 

 

 

 

 

 

 

 

 

• Ground state satisfies 𝛾𝑘𝑠 𝐺 = 0 

Example: Free fermion theory 
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=  𝐸𝑘𝛾𝑘𝑠
+ 𝛾𝑘𝑠

𝑘,𝑠=±

 



• The ground state wavefunction can be written explicitly 
in an exponential form: 

 

 

 

 

• Compared to the Ishibashi state: 

 

 

• 𝐺 = 𝑍−1/2𝑒−𝐻𝐸|𝐺0⟩ with 𝐻𝐸 ≃
1

2𝑚
(𝐻𝐿+𝐻𝑅) 

• i.e., 𝜏0 = 1/2𝑚 

Example: Free fermion theory 

Quasi-particle pair 
creation operators 

𝑘 

𝜖𝑘 
Coefficient→ 1 

for 𝑘 → 0  



• According to our result, the entanglement entropy is given 
by thermal entropy of CFT, which correctly recovers the 
topological entanglement entropy. (Kitaev&Preskill 2006) 

• This approach also applies to the entanglement between 
coupled one-dimensional systems, each of which is 
described by a CFT, such as the coupled Heisenburg chain 
(Poilblanc 1005.2123) and coupled Luttinger liquid (Y.-B. Kim 1009.3016)  

• In more generic situation,  non-topological edge states can 
appear on the edge, such as by edge reconstruction in 
quantum Hall states. In this case, the entanglement 
Hamiltonian 𝐻𝐸  and the physical edge Hamiltonian 𝐻𝑒𝑑𝑔𝑒 

are not identical, but still topologically equivalent. 

Discussion 



• By a “cut and glue” approach, we have shown that the 
entanglement spectrum in a generic (2+1) dimensional 
topological state with chiral edge states is described by the 
same conformal field theory as the edge states.  

• Therefore we have demonstrated Li&Haldane’s conjecture 
on the entanglement-edge theory correspondence. 

• When two gapless systems are coupled, there is a “trade off” 
between “low energy” and “strong entanglement”. The low 
energy states are coupled and become gapped while the 
entanglement spectrum becomes gapless. 

• Gapless entanglement spectrum can be used as a signature of 
topological states. 

• Such relation between entanglement and dynamics should 
also apply to higher dimensional topological states. 

Conclusion 


