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Much of this talk is based on recent preprint arXiv:1103.2039v2 (to be published
in Journal of Low Temperature Physics)

“Self-similar Expansion of the Density Profile in a Turbulent Bose-Einstein
Condensate,” M. Caracanhas, A. L. Fetter, S. R. Muniz, M. K. F. Margalães,
G. Roati, G. Bagnato, and V. S. Bagnato

work done in collaboration with V. S. Bagnato and his group,
Instituto de F́ısica de São Carlos,
Universidade de São Paulo, Brazil

and with G. Roati
LENS and Dipartimento di Fisica
Università di Firenze and INFM-CNR, Italy
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1. Introduction to quantum turbulence

Recall behavior of superfluid 4He at zero temperature

• superfluid velocity vs is irrotational (Landau 1941)

• hence ∇× vs vanishes

• but Onsager (1947) suggested superfluid circulation is quantized for any
closed contour C:

κs ≡
∮
C dl · vs = integer× 2π~/M where M is atomic mass

• Feynman (1955) resolved apparent paradox with introduction of quantized
superfluid vortex

• superfluid vs is related to phase S of effective one-body wave function:
vs = (~/M)∇S

• for single vortex along z axis, take S = polar angle φ, which immediately
gives Onsager’s quantized circulation
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• many experiments in period 1950s-1970s demonstrated the existence of
quantized vortices in superfluid 4He

• one common approach relied on rotation, where straight parallel vortices
provided relevant angular momentum

• eventually took photographs of small regular arrays of straight vortices
(Yarmchuk, Gordon, and Packard, 1979 saw up to ∼ 11 vortices)
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• note late date 1979 for this experiment, compared to Hall and Vinen’s first
experiments on quantized circulation and vortices more than 20 years earlier
(∼1956-61)

• Packard’s experiments were very difficult and took many years for success

• visualization of vortices in 4He relied on trapping of electron bubbles on
vortex cores (maximum ∼ 103 ions per cm)

• apply strong voltage pulse to extract charges that travel through vapor
above liquid and make image on a phosphorescent screen

• thermal fluctuations of vortices scale like T , but normal fluid density ρn
scales like T 4

• as T → 0, fluctuations predominate

• added small fraction 3He that provided necessary viscous drag (but not too
much to avoid scattering of electrons in vapor phase)
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Another whole class of experiments focused on tangled vortices

• in an early study, Vinen (1957) used heat currents to create a random
tangled array of quantized vortices

• Feynman (1955) suggested that such a random configuration was effectively
a kind of quantum turbulence

• experiments show that mean vortex line density is proportional to a power
of the external heat current

• use attenuation of second sound to measure vortex line density

• in second sound, the normal fluid and superfluid oscillate against each other,
out of phase

• since vortices move with the superfluid, they scatter the excitations of the
normal fluid, damping the coherent relative motion of the second sound
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Compare situation for dilute trapped Bose-Einstein condensate (BEC)

• these systems are dilute and can be described with order parameter
(equivalently a condensate wave function) Ψ

• here, Ψ = |Ψ| eiS provides the phase S in Feynman’s expression
vs = (~/M)∇S

• note that here M is typically much larger than for 4He (common trapped
gases are 23Na or 87Rb)

• non-rotating trapped condensates without vortices are well described by
Gross-Pitaevskii equation (a nonlinear Schrödinger equation)

• specifically, the predicted frequencies of collective monopole and quadrupole
modes agreed with experiment within a few %
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How to create vortices in trapped BEC?

• first experiment (Cornell, JILA 1999) used mixture of two hyperfine states
with |mF | = 1 that are coupled by near resonant electromagnetic radiation

• this coupling converts two independent U(1) systems into a single SU(2)
system that acts like spin-1/2 system

• while coupling is on, stir the condensate to add angular momentum

• turn off coupling and end up with vortex in one component surrounding
non-rotating core of other component

• can control fraction of each component and can visualize each one separately
because of slightly different resonant frequencies

• non-rotating core is typically large ∼ 10 µm and can be visualized with
visible light λ ∼ 0.5 µm)
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JILA group used this capability to study precession of these two component
vortices in harmonic traps

• top row are experimental figures (at 50 ms intervals)

• second row are smoothed figures (used Thomas-Fermi density profile)

• left graph shows precession angle over 300 ms
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More direct approach to vortex creation is to stir a one-component condensate
(Dalibard, ENS, Paris, 2000)

• use magnetic trap and stir with off-center toggled laser beam at frequency
Ω/2π ∼ 200 Hz

• rotate cigar-shaped condensate around its symmetry axis

• here the resulting vortex cores are ∼ 0.5 µm, too small to visualize with
visible light

• hence need to turn off the trap and expand the condensate

• vortex cores also expand and appear as holes in expanding condensate

• condensate expends rapidly in tightly confined (here radial) direction,
becoming pancake shaped
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These ENS experiments yielded pictures of small vortex arrays like those seen
earlier in superfluid 4He (up to ∼ 11 vortices)

• these experiments were much less complicated than those for 4He

• later experiments (MIT and JILA) produced much larger triangular arrays
(up to ∼ 130 vortices)
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2. Production of turbulent trapped BECs

Experimental studies by Bagnato’s group in São Carlos, Brazil [Henn et al.,
PRA 79, 043618 (2009) and PRL 103, 045301 (2009)]

Start with 87Rb cigar-shaped condensate in magnetic trap with ∼ 105 atoms

• then apply oscillating magnetic field aligned nearly but not exactly along
symmetry axis

• this field has components along each of the principal axes of the condensate

• it explicitly breaks the rotational symmetry

• leads to displacement of center of mass, rotation of condensate, and shape
deformation

• together, these oscillatory effects produce tangled vortices for sufficiently
strong applied fields and sufficient duration
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• (a) shows basic structure, with solid line a symmetry axis and dashed line
as axis of oscillatory magnetic field

• (b) shows expected motion of condensate in xy and yz planes
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This oscillatory magnetic field is similar to that in a theoretical study by
Kobayashi and Tsubota (2007)

They use sequential rotations about two perpendicular axes (first z and then
additionally x)
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For small amplitude of oscillatory field, experiments find scissors mode and
various other shape modes of condensate (monopole and quadrupole)

• for larger amplitude, find vortex creation is quasi-regular pattern (but not
reproducible from shot to shot)

• (a) shows density distribution for a single straight vortex with empty core
in center of condensate (asymmetry due to gravity)

• for still larger amplitude and longer exposure, (b) shows what looks like
vortex tangle in the expanded images (quantum turbulence)

• note present creation scheme is very different from Vinen’s heat flow in
superfluid 4He

• nevertheless, final vortex tangle is presumed to be similar in both cases
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• more detailed experimental studies seek to understand the vortex tangle

• (a) shows typical experimental image of expanded condensate with vortex
tangle

• (b) is schematic diagram of inferred vortex distribution
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This vortex tangle is quite similar to theoretical pictures of Kobayashi and
Tsubota (2007)

• here (a)-(c) shows altered shape of originally nearly spherical condensate
under influence to two successive rotations (z followed by additionally x) at
dimensionless times 10, 50, and 300

• (d)-(f) show the growth of the vortex tangle inside the Thomas-Fermi radius
at same dimensionless times
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3. Observation of self-similar expansion in turbulent condensates

For nonrotating nonspherical condensate, turning off trap leads to expansion
with “reversal of aspect ratio”

• in general, tightly confined direction expands most rapidly, so initial cigar
expands to a disk, and initial disk expands to elongated cigar shape

• in weakly interacting BEC, this reflects the large kinetic energy associated
with tight confinement

• interaction effects enhance this behavior, because the associated effective
interaction pressure is proportional to local density gn(r)

• resulting force −∇gn(r) acts most strongly in tightly confined direction
where gradient is large

• note that this quantum behavior differs from that in a thermal cloud, where
temperature fixes the initial momentum, leading to isotropic expansion
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• this reversal of aspect ratio is readily seen in following example (a montage
of images after condensate is released from trap and falls under gravity)

• initial condensate is elliptical with elongation along horizontal axis (too
small to resolve fully)

• under expansion, condensate first becomes circular and then elongates
vertically

• already mentioned this behavior in connection with ENS experiments on
creation of quantized vortices in initial cigar-shaped condensate
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Behavior of turbulent condensates is very different

• experiment by Bagnato’s group shows roughly self-similar expansion with
no reversal of aspect ratio

• (a) first column shows expansion of thermal cloud tending to unity

• (b) second column shows usual anisotropic expansion of nonrotating BEC

• (c) third column shows self-similar expansion of condensate in turbulent
regime (note extra expansion leading to larger image)

• this behavior must arise from the vortex tangle, since regular vortex arrays
generally show reversal of aspect ratio
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4. Theoretical model based on Thomas-Fermi approximation

Recall Euler equation for an ideal (nonviscous) fluid

∂v

∂t
+ (v ·∇)v +

1

ρ
∇p = f ,

where v is the local velocity, p is the pressure, ρ is the mass density, and f is
the force density (such as gravity)

• this equation is simply Newton’s law applied to a particular element of
moving fluid (Eulerian picture)

• first two terms are the convective or hydrodynamic derivative

dv

dt
=
∂v

∂t
+ (v ·∇)v
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• familiar vector identities lead to equivalent form

∂v

∂t
+ ∇

(
1
2v

2
)

+
1

ρ
∇p = f + v × (∇× v)

• for an incompressible irrotational fluid with ∇ × v = 0, the velocity may
be expressed by a velocity potential v = ∇Φ

• for an external potential with f = −∇V , this immediately yields Bernoulli’s
equation

∇
(

1
2v

2 +
p

ρ
+ V +

∂Φ

∂t

)
= 0

• in presence of vorticity, need to retain term v × (∇× v)

• for solid-body rotation with angular velocity Ω, velocity is v = Ω× r and
∇× v = 2Ω, so this term becomes 2v ×Ω

• in this latter situation, cannot use velocity potential and need full form of
dynamical equation
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How does these considerations apply to turbulent BECs?

Recall Feynman’s suggestion (1955) that the areal vortex density in a rotating
superfluid should be nv = 2Ω/κ = MΩ/(π~), where κ = 2π~/M is the
quantum of circulation

• this result follows by assuming that the mean vorticity nvκ should be the
classical value for solid-body rotation ∇× v = 2Ω

• experiments on rotating BECs with vortex lattices confirm this Feynman
relation with considerable accuracy

• MIT experiment with up to ∼ 130 vortices
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Return to full time-dependent GP equation in hydrodynamic form for n and v

• first is conservation of particles

∂n

∂t
+ ∇ · (nv) = 0

• second is usual dynamical equation, now written in terms of hydrodynamic
(convective) derivative dv/dt = ∂v/∂t + (v ·∇)v

M
dv

dt
+ ∇ (Vtr + gn− µ) = 0,

which is just Newton’s law for the superfluid BEC

• here Vtr is confining trap potential, gn describes the repulsive interactions
with g = 4π~2a/M > 0, a ∼ a few nm is the s-wave scattering length, and
µ is chemical potential

• here use Thomas-Fermi picture to ignore “quantum pressure” that involves
~2 and derivative of density

• note that these equations are written in the laboratory frame of reference
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• as for ideal classical fluid, expand convective term
(v ·∇)v = ∇(1

2v
2)− v × (∇× v)

• for dense vortex array, approximate mean vorticity as 〈∇×v〉 ≈ 2Ω, where
Ω follows from Feynman’s relation nv = MΩ/(π~)

• in this way, obtain the new dynamical equation for the superfluid in presence
of distributed mean vorticity

M
∂v

∂t
+ ∇

(
1
2Mv2 + Vtr + gn− µ

)
+ 2MΩ× v = 0

• this approach was used by Sedrakian and Wasserman (2001) and by Cozzini
and Stringari (2003)

• gives good description of quadrupole modes in rapidly rotating condensate,
including periodic formation of “stripes” in vortex lattice (JILA, 2002)
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• apply to axisymmetric condensate rotating about symmetry (z) axis with
angular velocity Ω

• in equilibrium, mean velocity in laboratory frame 〈vs〉 ≈ Ω × r leads to
familiar Thomas-Fermi condensate radii that now depend on Ω

R⊥(Ω)2 =
2µ(Ω)

M(ω2
⊥ − Ω2)

and Rz(Ω)2 =
2µ(Ω)

Mω2
z

,

where µ(Ω) = µ(0)
(
1− Ω2/ω2

⊥
)2/5

, with µ(0) for a nonrotating condensate

• aspect ratio Rz(Ω)/R⊥(Ω) =
√
ω2
⊥ − Ω2/ωz now depends on Ω

• provides good diagnostic method to infer angular velocity (JILA)
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Now apply these ideas to expansion of the condensate when trap
is turned off

• goal is to describe free expansion of a BEC containing fluctuating angular
momentum along all different directions (a vortex tangle)

• as first attempt, consider simpler situation with angular momentum along
each principal axis of axisymmetric condensate

• focus on two limiting cases to develop some intuition about the dynamics

• parametrize the density as follows (this is the usual Thomas-Fermi model)

n(r, t) = n0(t)

(
1− x2

Rx(t)2
− y2

Ry(t)2
− z2

Rz(t)2

)
• n0(t) is given by usual Thomas-Fermi normalization condition

n0(t) =
15N

8π Rx(t)Ry(t)Rz(t)
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First assume uniform vortex array along the symmetry axis ẑ

• here Ω is along symmetry axis (ẑ)

• assume velocity has both irrotational part caused by the expansion and
solid-body part from the uniform vortex array

v = 1
2∇
[
bx(t)x

2 + by(t)y
2 + bz(t)z

2
]︸ ︷︷ ︸

irrotational expansion flow

+ Ω× r︸ ︷︷ ︸
rotational flow

• substitute these expressions into the dynamical equations assuming that
trap potential vanishes for t > 0
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• find coupled second-order differential equations for evolution of condensate
radii

R̈x =
15N~2a

M 2

1

R2
xRyRz

+

(
Nv~
M

)2
1

RxR2
y

with similar equation for Ry, where Nv is total number of vortices (this
number is conserved), and

R̈z =
15N~2a

M 2

1

R2
zRxRy

• note role of repulsive interaction (a > 0) in expanding in all three directions

• initial Rz is large, so axial expansion (∝ R−2
z ) is small, leading to reversal

of aspect ratio for usual condensate
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• repeat transverse equations

R̈x =
15N~2a

M 2

1

R2
xRyRz

+

(
Nv~
M

)2
1

RxR2
y

with similar equation for Ry, where Nv is total number of vortices (this
number is conserved)

• note directions perpendicular to Ω (namely those along x and y) experience
additional outward force proportional to N 2

v (and hence proportional to
initial Ω2)

• vortex lines experience effective mutual repulsive interactions (like magnetic
field lines in a plasma)

• for large times, interaction terms (∝ a) are smaller than rotation terms
(∝ N 2

v ) by one factor of R−1

• numerical studies yield the time-dependent aspect ratio (condensate here
remains axisymmetric)
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• left side shows typical geometry of condensate with Ω along symmetry axis

• right side shows evolution of aspect ratio R⊥/Rz for various initial vortex
densities

• as anticipated, presence of axial vorticity (along z) enhances the radial
expansion and hence the aspect ratio during expansion
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Next assume uniform vortex array perpendicular to the
symmetry axis

• specifically, assume Ω = Ωx̂

• now rotating condensate is not symmetric about rotation axis

• this rotating asymmetry induces an additional irrotational flow induced by
the moving boundary

• induced velocity potential is proportional to Ωyz; corresponding induced
irrotational flow is proportional to ∇(Ωyz)

• hence generalize previous assumption for fluid velocity:

v = 1
2∇
[
bx(t)x

2 + by(t)y
2 + bz(t)z

2
]︸ ︷︷ ︸

irrot. expansion flow

+ Ω× r︸ ︷︷ ︸
rotational flow

+ α(t) ∇(Ω yz)︸ ︷︷ ︸
induced irrot. flow

with

α(t) =
R2
y(t)−R2

z(t)

R2
y(t) + R2

z(t)
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• now find different coupled second-order differential equations for evolution
of condensate radii

R̈x =
15N~2a

M 2

1

R2
xRyRz

,

R̈y =
15N~2a

M 2

1

R2
yRzRx

+ 4

(
Nv~
M

)2
Ry

(R2
y + R2

z)
2
,

and

R̈z =
15N~2a

M 2

1

R2
zRxRy

+ 4

(
Nv~
M

)2
Rz

(R2
y + R2

z)
2

• so far, numerical studies ignore the time dependence of initial conditions

• note presence of extra rotation-induced expansion along y and z, but not
along x
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• evaluate evolution of aspect ratiosRx/Rz andRx/Ry shown below for Ω = 0
(nonrotating) and for Ω = 0.7ω⊥

• note that Ω dramatically reduces growth of first aspect ratio

1. for Ω = 0, recover usual reversal of aspect ratio

2. for large Ω, aspect ratio Rx/Rz saturates near unity

• second figure shows that expanding condensate remains nearly axisymmetric
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Variational Lagrangian approach: anisotropic random vorticity

Use variational functional

L =

∫
d3r

[
i
~
2

(
Ψ∗
∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)
− E [Ψ]

]
,

for a trial function Ψ that depends on various variational parameters.

• here the energy density has the Gross-Pitaevski form

E [Ψ] =
~2|∇Ψ|2

2M
+ Vtr|Ψ|2 +

1

2
g|Ψ|4,

where g = 4π~2a/M , with a the s-wave scattering length, and Vtr(r) is the
trap potential (which is turned off at t = 0).

• generalize Thomas-Fermi Ψ to include expansion velocity and vortex
velocity.

• time-dependent terms and interaction energy lead to simple integrals
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• subtle point is evaluation of vortex contribution

• ignore slow translational motion of vortex tangle

• each vortex has circulating velocity field v = (~/Mr)φ̂ around the local
vortex axis

• a single vortex line has kinetic energy per unit length (π~2n/M) ln(r0/ξ),
where n is local number density away from core, r0 is inter-vortex distance
and ξ is core radius

• assume a length L of turbulent vortex lines per unit volume

• integral over condensate volume yields approximate vortex energy

Ev ≈
Nπ~2

M
L ln

(
1

L1/2ξ

)
,

with L−1/2 as the approximate inter-vortex separation.
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How does vortex line length per unit volume L depend on condensate
dimensions?

• assume a total number Nv of vortices in condensate

• for isotropic turbulence, L should scale like
√
R2
x + R2

y + R2
z/(RxRyRz)

(I thank G. Baym for discussions on this point)

• geometry of experiments suggests that turbulence in preferentially in xy
plane

• hence introduce anisotropy parameter θ and assume

L ≈ Nv

√
sin2 θ

(
R2
x + R2

y

)
+ cos2 θ R2

z

RxRyRz

• θ = π/4 is isotropic case, and θ ≈ π/2 describes turbulence in xy plane
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Lagrangian approach eventually yields dynamical equations for the expansion
radii

2

7
MR̈⊥ = − ∂U

∂R⊥
and

1

7
MR̈z = − ∂U

∂Rz

• here, U is an effective potential

U(R⊥, Rz) =
15

7

~2Na

MR2
⊥Rz︸ ︷︷ ︸

interactions

+
π~2Nv

M

√
2 sin2 θ R2

⊥ + cos2 θ R2
z

R2
⊥Rz

ln

(
1

L1/2ξ

)
︸ ︷︷ ︸

turbulent vortices

with separate terms arising from the repulsive interactions and from the
turbulent vortices

• interaction term is of order R−3 and dominates for short time

• vortex term is of order R−2 and dominates for large time

• turbulent vortex term here contains only Nv, in contrast to N 2
v for uniform

vortex array (because of random cancellation)

38



Typical experimental values for Brazil trap are:

• number of 87Rb atoms N = 2× 105

• ω⊥ = 2π × 207 Hz and ωz = 2π × 23 Hz

• leads to geometric mean angular frequency ω0 =
(
ω2
⊥ωz
)1/3

= 625 s−1

• mean bare trap size is d0 =
√

~/Mω0 = 1.08 µm (this ignores repulsion)

• use ω−1
0 and d0 as units of time and distance

• initial condensate radii in these units are R⊥ = 3.30 and Rz = 29.7
(cigar shaped)

• initial vortex core size is small ξ = 0.146

• assume number of vortices Nv ≈ 100
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Integrate resulting equations of motion for 0 ≤ t ≤ 200 (this is about 0.3 s)

• need to assume anisotropy parameter θ ≈ π/2 (random vorticity in xy
plane) since otherwise vorticity in z direction enhances radial expansion

• condensate expands radially initially but saturates with aspect ratioR⊥/Rz ≈
2.5 (experiment suggests this ratio is of order one)

• solid line is vortex-free condensate and dashed line is turbulent condensate

• if number of vortices is Nv ≈ 200, then aspect ratio saturates near 2
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Comments, Discussion, and Conclusions

Here, explain qualitatively the anomalous self-similar expansion of turbulent
condensate

• first use macroscopic toy model based on rotational dynamics with uniform
distributed vorticity aligned perpendicular to symmetry axis of condensate

• based on experimental geometry that couples applied excitation
preferentially to axes perpendicular to symmetry axis

• leads to significant reduction of aspect-ratio inversion

• second use Lagrangan variational method to include random turbulent
vorticity (preferentially in xy plane)

• both models lead to roughly self-similar expansion of turbulent condensate,
but details are not quantitatively correct

41



Acknowledgments

I thank Vanderlei Bagnato for terrific hospitality during visits to São Carlos
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