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Motivation: Driven open many-body dynamics

• experimental many-body systems without particle number conservation

• polar molecules (Jun Ye Labs)

• open system Dicke models in cavity (Esslinger)/ circuit (Schoelkopf, 
Wallraff) QED, nanomechanical systems (Painter, Lehnert, Aspelmeyer)

• other platforms (light-matter): 

➡ dissipative Rydberg systems

➡ polar molecules

➡ photon BECs

➡ trapped ions

• exciton-polariton systems in 
semiconductor quantum wells 5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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• experimental systems on the interface of quantum optics and many-body physics

• Coupled microcavity arrays
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How much “quantum” remains at large distances?

18 T. Gasenzer

Fig. 7. (Color online) Classical vs. quantum
mechanics. The classical path for given bound-
ary conditions at tini and/or tfin is shown as
thick (red) line. The thin (black) paths would
require, e.g., different initial values for ϕ, ϕ̇.
In the microscopic world, the thin (black)
paths add constructively to the path integral
if their action S[ϕ] deviates less than h̄ from
the extremal value corresponding to the classi-
cal path. Also tunneling processes as indicated
by the thick (yellow) line would add construc-
tively to the integral.

which leads to the Euler-Lagrange, i.e., the sought dynamic equation for ϕ.4 For instance, given
particular initial values for the position and velocity of the child on the slide shown in Fig. 7
at t = tini, this equation has the thick solid (red) path as solution. Different paths require in
general different initial conditions to be imposed.

On scales where quantum effects become relevant, the real world is somewhat more intricate.
Fluctuations around the classical path as depicted by the thin (black) solid lines in Fig. 7 imply
the action S[ϕ] to deviate from its classical extremal value, and, only if this deviation is larger
than h̄, the phase factor exp{iS[ϕ]/h̄} suppresses the contributions of such paths to the integral
through destructive interference. Qualitatively new effects are in order like the “quantum child”
which can tunnel through the edge of the slide as along the (yellow) path in Fig. 7.

We generalise this path-integral formulation to QFT, where the coordinates ϕ become fields
ϕ(x) defined over time and space. Moreover, we introduce external classical, i.e., non-fluctuating
sources J(x) to turn the path integral into a generating functional for correlation functions,
similarly as in the (grand) canonical partition function in equilibrium physics. This generating
functional reads

Z[J ] =

∫
Dϕ ei(S[ϕ]+

R
Jϕ) (45)

Here and in the following we shall use, if not explicitly stated otherwise, natural units, with
h̄ = 1. We use the short-hand notation

∫
Jϕ =

∫
C dd+1xJ(x)ϕ(x) =

∫ tfin
tini

dx0

∫
ddxJ(x)ϕ(x),

C = [tini, tfin]. For instance, it allows the field expectation value φ = ⟨Φ⟩ to be written as

φ(x) =
δW [J ]

δJ(x)

∣∣∣∣
J=0

= Z−1

∫
Dϕϕ(x) eiS[ϕ], (46)

where W [J ] = −i lnZ[J ] is the Schwinger functional. We introduce the quantum effective action
Γ [φ] by demanding that the full quantum dynamics of the field expectation value φ is given by

4 In deriving the Euler-Lagrange equation the variation of the coordinate ϕ is usually taken to vanish
at the boundaries of the time interval [tini, tfin]. This procedure applies to systems with differential
evolution equations of second order in time. For dynamic equations of first order in time, as the GPE,
care needs to be taken when using the path integral for initial value problems, see, e.g., Ref. [136]

gc

How much “non-equilibrium” remains at large distances?

?

• Challenge to theory: perform the transition from micro- to macrophysics in driven interacting systems
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Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
are mainly interested in the out-of-equilibrium dynamics of Ĥc in the presence of losses and
external driving fields. In particular, in this work we model the resulting dissipative dynamics
for the system density operator ⇢ by a master equation (ME) of the form

⇢̇ = �i[Ĥc + Ĥ�(t), ⇢] + 0
X

`

D[ĉ`]⇢ +L⇢, (2)

where D[ĉ]⇢ ⌘ 2ĉ⇢ĉ† � ĉ†ĉ⇢ � ⇢ĉ†ĉ. In equation (2) the Hamiltonian Ĥ�(t) =P
` �`(e�i!dt ĉ†

` + ei!dt ĉ`) describes an external driving field of frequency !d which is
used to excite the system, and the second term accounts for photon losses in each cavity with
a field decay rate 0. While a finite driving field is required to counteract the losses, it will
in general also compete with Ĥc and, for strong driving fields, even dominate the system
dynamics. Therefore, in previous works it has been suggested to either study the transient
dynamics of an initially prepared photonic state [14, 16, 43] (where �` = 0 for times t > 0)
or use excitation spectroscopy [35, 44–47] in a weakly driven system (�` < 0) to probe the
single- and few-body spectrum of the Hamiltonian Ĥc.

In this work, we are interested in the opposite regime of a strongly and continuously driven
system, where the total photon number in the cavity array is large. We study the dynamics of
this system in the presence of an additional artificial thermalization mechanism, denoted by L

in equation (2). More precisely, we will show below how a non-local coupling of photons to
superconducting qubits can be engineered in an array of microwave cavities to implement a
dissipative photon scattering process of the form

L =
X

`



4
D[(ĉ†

` + ĉ†
`+1)(ĉ` � ĉ`+1)] +

 0

4
D[(ĉ†

` � ĉ†
`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/

p
2 into the symmetric (energetically lower) mode

4 Although for concreteness we assume J > 0 in this work, this is not essential for the results on condensation
presented below, since this is achieved ‘dissipatively’ through the Liouvillian (3), and therefore not determined by
the energy of the modes.

New Journal of Physics 14 (2012) 055005 (http://www.njp.org/)

� �
+⌦ �⌦

L. Sieberer, S. Huber, E. Altman, SD, PRL 2013; PRB 2014
U. C. Tauber, SD, PRX 2014

J. Marino, S. Diehl, in preparation (2015)
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`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/
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FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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• generic microscopic model: many-body master equation, 
eg.
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Microscopic Model

• quantum description of XP systems
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• generic microscopic model: many-body master equation
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system

Theoretical Approach
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• evaluation strategy:
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many-body master equation
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of quantum field theory to 
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➡ derivative expansion including 
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Driven Classical Criticality 

L. Sieberer, S. Huber, E. Altman, SD, 
PRL 110, 195301 (2013) and PRB 89, 134310 (2014);

U. C. Tauber, SD, PRX 4, 021010 (2014)

5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
are mainly interested in the out-of-equilibrium dynamics of Ĥc in the presence of losses and
external driving fields. In particular, in this work we model the resulting dissipative dynamics
for the system density operator ⇢ by a master equation (ME) of the form

⇢̇ = �i[Ĥc + Ĥ�(t), ⇢] + 0
X

`

D[ĉ`]⇢ +L⇢, (2)

where D[ĉ]⇢ ⌘ 2ĉ⇢ĉ† � ĉ†ĉ⇢ � ⇢ĉ†ĉ. In equation (2) the Hamiltonian Ĥ�(t) =P
` �`(e�i!dt ĉ†

` + ei!dt ĉ`) describes an external driving field of frequency !d which is
used to excite the system, and the second term accounts for photon losses in each cavity with
a field decay rate 0. While a finite driving field is required to counteract the losses, it will
in general also compete with Ĥc and, for strong driving fields, even dominate the system
dynamics. Therefore, in previous works it has been suggested to either study the transient
dynamics of an initially prepared photonic state [14, 16, 43] (where �` = 0 for times t > 0)
or use excitation spectroscopy [35, 44–47] in a weakly driven system (�` < 0) to probe the
single- and few-body spectrum of the Hamiltonian Ĥc.

In this work, we are interested in the opposite regime of a strongly and continuously driven
system, where the total photon number in the cavity array is large. We study the dynamics of
this system in the presence of an additional artificial thermalization mechanism, denoted by L

in equation (2). More precisely, we will show below how a non-local coupling of photons to
superconducting qubits can be engineered in an array of microwave cavities to implement a
dissipative photon scattering process of the form

L =
X

`



4
D[(ĉ†

` + ĉ†
`+1)(ĉ` � ĉ`+1)] +

 0

4
D[(ĉ†

` � ĉ†
`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/

p
2 into the symmetric (energetically lower) mode

4 Although for concreteness we assume J > 0 in this work, this is not essential for the results on condensation
presented below, since this is achieved ‘dissipatively’ through the Liouvillian (3), and therefore not determined by
the energy of the modes.

New Journal of Physics 14 (2012) 055005 (http://www.njp.org/)

� �
+⌦ �⌦

J. Marino, SD, arxiv:1508.02723 (2015)



Non-equilibrium analogue of quantum criticality

• Lindblad Master equation with strong quantum diffusion (1D)
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coherent field of strength |�|. This external driving compensates for losses and
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• possible realization: microcavity arrays
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cf. D. Marcos et al., NJP (2012)



“What is quantum about it?”

T !

PK
(!) ⇠ ! coth

!
2T

• analogy to an equilibrium system: noise level

classical/markovian

quantum/non-markovian

• two regimes

➡scaling of the noise level

!/2T ⌧ 1 : PK(!) ⇡ 2T, PK(t� t0) ⇠ �(t� t0)

!/2T � 1 : PK(!) ⇡ |!|, PK(t� t0) ⇠ (t� t0)�2



• strongly momentum dependent noise level

PK(q)

q

diffusion noise

markovian non-equilibrium: 
weak noise at long wavelength

PK
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!
2T

!

equilibrium: 
weak noise at long timescales

• identical canonical scaling to quantum problem for z = 2 (! ⇠ q2)

• but spatial vs. temporal noise

Non-equilibrium analogue of quantum criticality
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non-eq variant: cf. 
Dalla Torre et al., Nat 

Phys. (2010) 
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rescaled Markov noise 
at FP

• non-gaussian critical scaling for ⇤M ⌧ ⇤G
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�d

• anomalous scaling regime: two scales 

integration of one-loop flow 
cf. Chiochetta, Mitra, Gambassi, arxiv (2014)
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• new fixed point with more repulsive directions (fine tuning of loss rate)

• results for critical exponents

thermal-like 
1 repulsive direction

Gaussian
all directions repulsive

quantum-like 
2 repulsive directions

g1

g2

g3

(1) No quantum-classical correspondence

4

Crit. Exps. ⌫ ⌘KR ⌘KI ⌘ZR ⌘ZI ⌘�d ⌘�

DD Quantum 0.405 -0.025 -0.025 0.08 0.04 -0.26 ⇥
DD SC 0.72 -0.22 -0.12 0.16 0 ⇥ -0.16

TABLE I. Comparison between the critical exponents of the
quantum and semi-classical DD models. In the SC scaling
� ⇠ k0, and the Markovian noise can acquire an anomalous
dimension, ⌘� .

r ⇠ k�⌘KR
+⌘KI . It is thus fully consistent with the find-

ing of finite ratios discussed above, and in particular it
indicates absence of decoherence at long distances: This
is a hallmark of persistence of quantum mechanical facets
at criticality (see Fig. 1). Survival of quantum coher-
ence at scales shorter than ⇤�1

M

, is a common feature
between our FP and equilibrium quantum critical points
[41, 47, 48].

(iii) Absence of asymptotic thermalization– The
anomalous dimension of the di↵usive noise coupling, ⌘

�d ,
provides complementary information to the anomalous
dimensions, ⌘

KI,R , related to the spectral sector (R/A):
it is of primary importance in establishing the persistence
of the NEQ character of the system at macroscales.

A convenient diagnostic tool for thermal equilibrium in
quantum many body systems, is the presence of a sym-
metry of the Keldysh functional integral, which combines
quantum-mechanical time reversal and the Kubo-Martin-
Schwinger condition [49]. Even if such symmetry is ex-
plicitly violated at the microscopic level by driven Marko-
vian evolution, it is remarkably recovered at the SC FP
of driven-dissipative (DD) systems [16]. The FD relation
– a Ward-Takahashi identity of this symmetry – demands
that the e↵ective temperature T

C

= |Z|�, extracted from
the infrared bosonic distribution function F

C

(!, k) ⇠ TC
!

,
is scale-invariant. This expresses the principle of detailed
balance of thermal equilibrium states (invariance of tem-
perature under the system partition) in an RG language.
Such circumstance occurs at the SC FP via the emer-
gent exponent degeneracy ⌘

�

= �⌘
ZR

(cf. Tab. I) – the
system thermalizes asymptotically.

In the same spirit, if thermalization were to ensue close
to the quantum FP, scale-invariance of the low-frequency
distribution function, F

Q

(!, k) ⇠ TQ(k)
!

(1 + �̃⇤/2), must
be expected as a necessary condition. Specifically, replac-
ing the bare scaling of the frequency ! ⇠ kz in F

Q

(!, k),
insensitivity to system’s partition would manifest in the
exact scaling relation F

Q

⇠ k0. The absence of exponent
degeneracy, ⌘

�d 6= �⌘
ZR

(cf. Tab. I), signals scaling vi-
olation in the infrared behaviour of F

Q

⇠ k⌘�d
+⌘ZR , and

accordingly the absence of infrared thermalization at the
quantum FP.

This absence of infrared restoration of an equilibrium
FD relation constitutes the strongest evidence that the
quantum universality class found in this Letter cannot
be related to its SC driven Markovian counterpart in d+

FIG. 1. (Color online) Comparison between the FPs of
the NEQ quantum action and of the SC action for driven-
dissipative Markovian systems. The location of the couplings
in the complex plane is sketched. In the quantum problem the
RG flow freezes in the plane, while in the SC problem deco-
herence forces asymptotically all couplings onto the imaginary
axis.

z dimensions, or to an equilibrium FP. In other words,
there is no quantum-to-classical correspondence [47, 48]
familiar from equilibrium systems.
(iv) RG limit-cycle of Z– Finally, we consider the im-

pact of a non-vanishing imaginary part of ⌘
Z

at the
quantum FP, ⌘

ZI

= 0.04 – which is, in contrast, ex-
actly zero at the purely dissipative SC FP (cf. Tab
I). The peak of the spectral density (the imaginary
part of the retarded single particle dynamical response),

A(! = Re!(k)) = Re(Z)
|Z|2

1
Im!(k) , is sensitive to oscilla-

tions present in Z ⇠ k�⌘ZRe�i⌘ZIt, which are induced by
⌘
ZI

6= 0, where t = log(k/k
UV

) is the RG flow parameter.
Even if these limit-cycle oscillations occur with a huge pe-
riod, 2⇡

⌘ZI
, they are a remarkable signature of deviation

from equilibrium behaviour at macroscales, since they
prevent the possibility to have a real wave-function renor-
malization Z, contrary to what happens for the equilib-
rium MSR action of model A or in the vicinity of the
SC FP [16]. Remarkably, we find a twin FP of the one
discussed above (with r⇤ ! �r⇤, and the other rescaled
variables unchanged), which exhibits the same critical
exponents, except an opposite value of ⌘

ZI

= �0.04. It
thus displays counter-phase limit-cycle oscillations of Z.
Conclusions– We have shown that both quantum me-

chanical coherence and the microscopic driven nature of
open quantum systems can persist at the largest dis-
tances close to a critical point, in striking contrast with
classical equilibrium and SC NEQ critical points. The
techniques developed here pave the way for a system-
atic classification of driven open systems where genuine
quantum e↵ects play a role. In particular, in analogy to
the seminal Hohenberg-Halperin models [32], we expect
additional symmetries and conservation laws (e.g. par-

different degree of 
divergence of 

correlations length

1+2 dimensions

3 dimensions

⇠ ⇠ (t� tc)
�⌫

static dynamic noise



➡ mixed fixed point with finite dissipative and coherent couplings 

(2) Absence of Asymptotic Decoherence
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• coherent dynamics does not fade out:

• exponent degeneracy: ⌘A = ⌘D = �0.03

ri ⌘
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• how to detect thermal equilibrium in a quantum system?

• associated “Ward identities” are quantum Fluctuation-Dissipation relations to arbitrary order

• reproduces classical limit for 

• present for any microscopically time translation and time reversal invariant Hamiltonian

➡ intuition: whenever the dynamics is generated microscopically 
by a time-independent Hamiltonian, the ensuing irreversible 
dynamics can be thermal (all scales)

(3) Absence of Asymptotic Thermalization

➡ symmetry of Schwinger-Keldysh action under transformation
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q
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◆

L. Sieberer, A. Chiochetta, A. Gambassi, U. 
Tauber, SD, to appear in PRB (2015)

H. K. Janssen (1976); C. Aron et al, J Stat. Mech (2011)



➡ microscopic and universal asymptotic violation of quantum FDR

• practical benefit: symmetry as straightforward diagnostic tool for Schwinger-Keldysh actions

• symmetry explicitly violated microscopically by markovian quantum dynamics

• not emergent:

Z ⇠ k⌘Zei⌘
0
Z log k/⇤, �d ⇠ k⌘�d

⌘Z = ⌘� = 0.16

Z ⇠ k⌘Z , � ⇠ k⌘�

⌘Z = 0.08, ⌘0Z = 0.03, ⌘�d = �0.26

(3) Absence of Asymptotic Thermalization

Im

Re

“quantum”
Im

Re

classical

• formally:

quasiparticle residue noise level



• practical benefit: symmetry as straightforward diagnostic tool for Schwinger-Keldysh actions

• symmetry explicitly violated microscopically by markovian quantum dynamics

• not emergent:

Z ⇠ k⌘Zei⌘
0
Z log k/⇤, �d ⇠ k⌘�d

⌘Z = ⌘� = 0.16

Z ⇠ k⌘Z , � ⇠ k⌘�

⌘Z = 0.08, ⌘0Z = 0.03, ⌘�d = �0.26

(3) Absence of Asymptotic Thermalization

Im

Re

“quantum”
Im

Re

classical

• formally:

quasiparticle residue noise level

➡ limit-cycle like oscillations with (huge!) period 
(observable: spectral density)

kn+1

kn
= e

2⇡
⌘0
Z



Fate of the Kosterlitz-Thouless transition in 
Driven Systems

r

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

non-equilibrium 
disordered  (rough) 

phase

L⇤

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)
E. Altman, SD, L. Sieberer, G. Wachtel, in preparation

Microscopic
Quantum Optics

“Thermodynamic”
Many-body physics

Long wavelength
Statistical mechanics 



A paradigm of equilibrium stat mech: (no) BEC in 2D

low temperature high temperature

• correlations

⇠ e�r/⇠

• superfluidity

⇢s 6= 0 ⇢s = 0

• KT transition: unbinding of vortex-antivortex pairs

h�(r)�⇤(0)i ⇠ r�↵



A paradigm of equilibrium stat mech: (no) BEC in 2D

low temperature high temperature

• correlations

⇠ e�r/⇠

• superfluidity

⇢s 6= 0 ⇢s = 0

• KT transition: unbinding of vortex-antivortex pairs

… also for driven-dissipative condensates?

h�(r)�⇤(0)i ⇠ r�↵



Fate of correlations in 2D driven systems
• spin waves become non-linear, described by KPZ equation (surface roughening)

r

h�⇤(r)�(0)i

algebraic quasi-long range order 
(Kosterlitz-Thouless phase) non-equilibrium disordered  

(rough) phase

• a length scale is generated:

L⇤

➡ algebraic order absent in any two-dimensional 
driven open system at the largest distances

• beyond this scale, expect KPZ scaling physics

L⇤ = a0e
2⇡
�2

E. Altman, L. Sieberer, L. Chen, SD, J. Toner  
PRX (2015)

@t✓ = Dr2✓ + �(r✓)2 + ⇠

Kardar, Parisi, Zhang, 
PRL (1986)

• implications:

⇠ r�↵ ⇠ e�r2� , � ⇡ 0.37

absent in equilibrium by 
symmetry



Finite-size phase diagram

�/D�KT /D

ln(L/a)

ln(⇠KT /a) ⇠
1p

���KT

KT superfluid

normal fluid

• (equilibrium) Kosterlitz-Thouless vs. KPZ
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KT crossover

experiments: Yamamoto group, PNAS, 2012 & PRB, 2014 
numerics: Dagvadorj et al, arXiv, 2014

• (equilibrium) Kosterlitz-Thouless vs. KPZ



Finite-size phase diagram

�/D�KT /D

ln(L/a)

ln(⇠KT /a) ⇠
1p

���KT

KT superfluid

ln(L⇤/a) ⇠
D3

�2�

KPZ phase

normal fluid

small system

KT crossover

experiments: Yamamoto group, PNAS, 2012 & PRB, 2014 
numerics: Dagvadorj et al, arXiv, 2014

• (equilibrium) Kosterlitz-Thouless vs. KPZ



Non-equilibrium Kosterlitz-Thouless

• compact nature of phase allows for vortex defects in 2D! vortex anti-vortex

• in 2D equilibrium: perfect analogy between vortices and electric charges

• log(r) interactions,              forces  1/(✏r)

• dielectric constant            = superfluid stiffness✏�1

T<TKT$ T>TKT$
superfluid$=$dipole$gas$$
(“vortex$insulator”)$

Normal$=$plasma$
metallic$screening$

✏�1 ! 0✏�1 > 0

superfluid = dipole gas

➡ how is this scenario modified in the driven system?

normal fluid = plasma
metallic screening

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable



Electrodynamic Duality

vortex density 
& current

KPZ non-linearity and noise
over-damped vortex 

dynamics (ignoring mag field)
r̈i ! ṙi

r ·E = 2⇡nv

r⇥E+
1

D
B = 0

r⇥B� @E

@t
= 2⇡Jv � ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

r ·B = 0
dri
dt

= µniE(t, ri) + ⇠i

⇢� ⇢̄ ⌘ Bẑ ẑ⇥r✓ ⌘ E

• standard identification:

• Modified Maxwell equations

@t ! 1/D
modified continuity eq

phase dynamics 
(compact KPZ)

irrotational flow



A single vortex-antivortex pair

dr

dt
= �µrV (r) + ⇠

r

• close to the transition: dilute gas of vortices

• equation of motion for a single vortex-antivortex pair

r

V (r) = ln(r/a)

equilibrium: Coulomb potential (2D)



A single vortex-antivortex pair

dr

dt
= �µrV (r) + ⇠

r

• close to the transition: dilute gas of vortices

• equation of motion for a single vortex-antivortex pair

r

V (r) = ln(r/a)

equilibrium: Coulomb potential (2D)

noise-activated unbinding for a single pair (at exp small rate)

V (r) = ln(r/a)� C�2 ln(r/a)2

driven-dissipative system



Modified Kosterlitz-Thouless RG flow
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Modified Kosterlitz-Thouless RG flow
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Finite-size phase diagram
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KT crossover

medium system
KT crossover
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experiments: Yamamoto group, PNAS, 2012 & PRB, 2014 
numerics: Dagvadorj et al, arXiv, 2014



Summary: Universal non-equilibrium phenomena

1D quantum
New driven universality class

• non-equilibrium persists: no 
thermalization

Im

• quantum persists: no decoherence 

• limit cycle for quasiparticle residue

• PhD & Postdoc positions available within ERC Consolidator grant “Many-body Physics with 
Driven Open Quantum Systems of Atoms, Light and Solids” (DOQS)!

2D classical
Compact KPZ universality class

➡ challenge to experiments: universality requires large system sizes!

• no low-noise ordered phase as in KT

• rich structure of finite size crossovers
• small systems: eq. like

• larger systems: non-compact KPZ 
universality?

• thermodyn. limit: free vortices




