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Disks:	  Radiation	  and	  MHD	  are	  essential
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-‐	  Thermal	  expansion	  
(evaporation,	  
hydrodynamical	  escape)	  	  
-‐	  Radiation	  pressure	  (due	  
to	  gas	  and	  dust	  opacities)	  
-‐	  Magnetic	  <ields.	  	  
	  	  In	  most	  cases,	  rotation	  
plays	  a	  key	  role	  (directly	  
or	  indirectly).

What	  can	  drive	  an	  out<low	  or	  
regulate	  accretion?
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Here we will focus on the traditional case for RTI with
a high density fluid on top of a low density fluid separated
by an infinite thin interface. In the previous analytical
studies, simplifications are necessary to make the prob-
lem tractable. For example, radiation pressure is usu-
ally assumed to be isotropic, which is not true in general
at the interface. In this work, we relax these assump-
tions by solving the radiation hydrodynamic equations
numerically. We study both the linear regime, using
an Eddington tensor computed self-consistently from the
time-independent radiation transfer equation (i.e., we al-
low for anisotropic radiation pressure at the interface),
and we also follow the RTI into the non-linear regime
which is not possible in analytical studies. We note in
passing that we have also used our numerical methods
to test the stability of a radiation supported atmosphere
with a smooth density profile, and find no evidence for
instability, in agreement with ?.
The paper is organized as follows. In section 2, we de-

scribe the equations we solve and the numerical code we
use. We then consider the problem of RTI with a single,
initially static interface between two fluids of di↵erent
density. We describe the background equilibrium state
and initial perturbations in section 3, and summarize our
results in section 4. In section 5, we describe simulations
of RTI in shells being accelerated by radiation forces. We
summarize and conclude in section 6.

2. EQUATIONS

We solve the radiation hydrodynamic equations in the
mixed frame with radiation source terms given by ?. We
assume local thermal equilibrium (LTE) and that the
Planck and energy mean absorption opacities are the
same. Detailed discussion of the equations we solve can
be found in ?. With a vertical gravitational acceleration
g, the equations are
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Here, ⇢ is density, P ⌘ P I (with I the unit tensor) and P is
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where E
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is the internal gas energy density. We adopt
an equation of state for an ideal gas with adiabatic index
�, thus E
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where f is the variable Eddington tensor (VET). Radia-
tion flux is F

r

while c is the speed of light. The grav-
itational acceleration g is fixed to be a constant value
along the �z axis. S̃r(P ) and S̃

r

(E) are the radiation
momentum and energy source terms.
Following ?, we use a dimensionless set of equations

and variables in the remainder of this work. We con-
vert the above set of equations to the dimensionless form
by choosing fiducial units for velocity, temperature and
pressure as a
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mensional equations can then be written to the following
dimensionless form
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assuming subrelativistic motion, the dimensionless
source terms are,
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0

/P
0

is a measure of
the ratio between radiation pressure and gas pressure in
the fiducial units. We prefer the dimensionless equations
because the dimensionless numbers, such as C and P, can
quantitatively indicate the importance of the radiation
field as discussed in ?.
We solve these equations in a 2D x� z plane with the

recently developed radiation transfer module in Athena
(?). The continuity equation, gas momentum equation
and gas energy equation are solved with modified Go-
dunov method, which couples the sti↵ radiation source
terms to the calculations of the Riemann fluxes. The ra-
diation subsystem for E

r

and F
r

are solved with a first
order implicit Backward Euler method. Details on the
numerical algorithm and tests of the code are described
in ?. The variable Eddington tensor is computed from
angular quadratures of the specific intensity I

r

, which is
calculated from the time-independent transfer equation
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Details on how we calculate the VET, including tests,
are given in ?.

3. BACKGROUND EQUILIBRIUM STATE

As is usual, the background equilibrium state used to
study RTI in this work is an interface which separates

D. Proga KITP 20175



Accretion	  Disks	  vs	  Stars
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Two-phase medium math

● Gas with radiative heating/cooling in the equilibrium state  w/o 

gravity (Field 1965 & ...) 
● Like in theory of sound propagation, hydro equations are 

linearized around the stead state,  pert. ~ exp(nt+ikx)
● With L(n,T) the dispersion relation shows new eigen mode
● short λ, n=-Np (real), exponential growth rate if Np < 0, t=1/n

  

                       

See Nick Higginbottom’s talk

Irradiation	  of	  a	  Disk
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Luketic et al. (2010)
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Accretion	  Disks	  in	  Various	  Objects

XRB and AGN

Dyda, Dannen, Waters, DP (2017, submitted) photoionization calculations using XSTAR
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Thermal	  winds:	  effects	  of	  SED	  and	  <lux	  

Dyda, Dannen, Waters, DP (2017, submitted)
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Thermal	  winds:	  effects	  of	  <lux	  

Dyda, Dannen, Waters, DP (2017, submitted)
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X-‐ray	  photoionization

NGC 3079

Radiation force increases 
with decreasing 

irradiation.

Line-driven disk wind models 7

Table 1. Summary of results for disc winds with α = 0.6, k = 0.2, and Mmax = 4400.

run Ṁa x ṀD vr(10r∗) ω

(M⊙ yr−1) (M⊙ yr−1) (km s−1) degrees

our
A 10−8 0 5.5 × 10−14 900 50
B π × 10−8 0 4.0 × 10−12 3500 60
C π × 10−8 1 2.1 × 10−11 3500 32
D π × 10−8 3 7.1 × 10−11 5000 16
E π × 10−8 10 3.2 × 10−10 7000 8

PSD’s
2 10−8 0 4.8 × 10−14 900 42
3 π × 10−8 0 4.7 × 10−12 3500 55

8 π × 10−8 1 2.1 × 10−11(a) 3500 37

12 π × 10−8 3 6.3 × 10−11(b) 5000 28
14 π × 10−8 10 3.1 × 10−10 7000 24

a) We found a typographical error in PSD table 2 b) We calculated this model for longer than PSD did and we found that the flow
settles at a higher mass-loss rate.

mass accretion rate and hence the disk luminosity LD is
increased: specifically, Ṁa is raised from 10−8M⊙ yr−1 to
π × 10−8M⊙ yr−1. By contrast, panels b, c, and d compare
the flow pattern from three models in which the mass ac-
cretion rate is held fixed at Ṁa = 10−8M⊙ yr−1 while the
stellar luminosity is varied using, x = 0, 1, and 3. This di-
agram presents models with the same input parameters as
those shown in Figure 10 in PSD, with the difference that
here full-Q is implemented in their calculation and we plot
poloidal velocity vectors instead of density.

Our new models confirm PSD’s result that the flow be-
comes more equatorial as the contribution of the central star
to the radiation field increases. However the scale of the
changes in the flow geometry is greater for the full-Q case
than in the approximate Q case – the models for low x are
more polar here than in PSD, whereas the models for high
x are more equatorial. PSD found that the reduction of the
opening angle of the disk wind slows appreciably for x >∼ 3.
With full-Q, this slowing is deferred until x >∼ 5. For exam-
ple, we calculated the model for x = 10 and found ω = 8o,
rather than ω = 24o for PSD’s corresponding model, run 14.
Despite this geometric change, the gross wind properties as
listed in Table 1 are scarcely any different.

The two models illustrated in Figure 1 showed that the
model presented in PSD remains unsteady when recalcu-
lated using full Q, and that the originally steady model is
still steady. We can generalise this further in that we find
no noticeable shift in the value of x (= L∗/LD) at which
the change from unsteady to steady occurs. This is a fur-
ther respect, to add to the mass-loss rate and characteristic
flow speed, in which the full-Q models continue to closely
resemble PSD’s models.

5 DISCUSSION AND SUMMARY

The efficient algorithm described here has allowed us to ex-
amine the effects of all terms in the velocity gradient tensor
on the structure of line-driven winds from disks. We find that
the qualitative features of such winds are not changed by
the more accurate algorithm used here. In particular, models
which displayed unsteady behavior in PSD are also unsteady
with the full-Q method. This indicates the approximations
adopted in PSD indeed captured the dominant terms in the
line force.

On generalizing the line force, we determine the geom-
etry and strength of the line force in an exact way for a con-
stant geometry of the radiation field. We continue to find, as
in PSD, that the mass-loss rate and characteristic velocity
do not depend on either of these two geometries but primar-
ily on the total system luminosity. This is in keeping with
the conclusion reached by Proga (1999) who showed that the
mass-loss rate of even a simple spherically-symmetric stellar
wind is of the same order of magnitude as that of a pure
disk wind of the same total luminosity.

The dependence of the disk mass-loss rate on the total
system luminosity, LD + L∗, indicates that the irradiation
due to the central star can power disk mass loss as does the
disk radiation. Indeed we have already shown that the radia-
tion from the luminous central star can drive a wind from an
optically-thick disk of negligible intrinsic luminosity, i.e., for
x = 300 and LDMmax << LEdd, where LEdd = 4πGM∗/σe

is the Eddington luminosity (Drew, Proga & Stone 1998).
The significance of irradiation has also been studied by Gay-
ley, Owocki & Cranmer (1999). They also find, on the basis
of a quite different formulation of the problem for an irradi-
ated planar slab atmosphere, that the irradiation enhances
or even induces the mass loss.

c⃝ 0000 RAS, MNRAS 000, 000–000

?      

The	  main	  question	  is:
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FU Ori  (MS S)

AGN (SMBH)

CV  (WD)

LMXB (NS)

GBH (LM BH)
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4πcGMa
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2ra

Γ =
L

LEdd

=
˙ M aσ

8πcra

ΓUV =
LUV

LEdd

Line	  Driven	  Disk	  Winds:	  
across	  various	  scales

Proga (2002)

1/(TOTAL UV LINE OPACITY)
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Proga, Stone & Drew (1998)
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L(disk)=3 

L(star)=0

L(disk)=3 

L(star)=3

D. Proga KITP 201715



Line	  driven	  disk	  winds	  and	  their	  line	  pro<iles	  
(application	  to	  CVs)

L(disk)=3 

L(star)=0

L(disk)=3 

L(star)=3
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€ 

DL = 23.4 SUNL , WDL = 0.25 DL ,
a

˙ M =
−83×10 SUNM

−1yr

CIV 1549 for IX Vel (Hartley et al. 2001); models Proga (2003b)

Line	  driven	  disk	  winds	  and	  their	  line	  pro<iles	  
(application	  to	  CVs)
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€ 

DL = 23.4 SUNL , WDL = 0.25 DL ,
a

˙ M =
−83×10 SUNM

−1yr

CIV 1549 for IX Vel (Hartley et al. 2001); models Proga (2003b)

Models	  of	  CV	  winds	  reproduce	  the	  observed	  
absorption	  pro<iles	  of	  UV	  resonant	  lines	  
(promise	  to	  be	  as	  successful	  as	  models	  of	  

winds	  from	  OB	  stars).

Line	  driven	  disk	  winds	  and	  their	  line	  pro<iles	  
(application	  to	  CVs)
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a
˙ M = −81×10 SunM −1yr

WDM =1 SunM

Lower limit for the mass 
accretion rate

Drew & Proga (1999)
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MHD-‐Line	  Driven	  disk	  winds

Proga (2003a) D. Proga KITP 201720



The	  mass	  loss	  rate	  in	  MHD-‐LD	  winds

Proga (2003a)
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The	  mass	  loss	  rate	  in	  MHD-‐LD	  winds

Proga (2003a)
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Irradiation	  of	  a	  Disk	  Wind

?
A	  wind	  driven	  by	  UV	  photons,	  	  

similar	  to	  winds	  from	  OB	  stars	  or	  CVs	  
(main	  differences:	  the	  geometry	  and	  energy	  

distribution	  of	  radiation	  <ield).
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An	  Update:	  	  
new	  diagnostics	  and	  tests

Radiation	  Driven	  Disk	  Winds	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (Are	  they	  the	  BLRs?)
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€ 

BHM = 810 Msun
Γ = 0.6

UV only 
(no X-rays)

Proga, Stone & Kallman (2000), Proga & Kallman (2004) = 0.6

Line-‐Driven	  Disk	  winds	  (application	  to	  quasars)

Elvis et al., 1994, ApJS, 95, 1
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€ 

BHM = 810 Msun
Γ = 0.6Proga, Stone & Kallman (2000), Proga & Kallman (2004) 
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Elvis et al., 1994, ApJS, 95, 1
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1μm 

inflec<on 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(~10‐30keV) 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= ν‐3 (dust) 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Radio‐loud 

Radio‐quiet 

X-ray

UV and X-rays
Radiation	  pressure	  on	  UV	  lines	  can	  drive	  a	  powerful	  
wind	  from	  a	  disk	  even	  when	  the	  wind	  is	  irradiated	  

by	  a	  strong	  central	  source	  of	  X-‐rays.

The	  	  wind	  can	  be	  	  very	  fast	  (~20,000	  km/s)	  and	  its	  
mass	  loss	  rate	  is	  high	  (~1	  solar	  mass	  per	  year)

= 0.6

Line-‐Driven	  Disk	  winds	  (application	  to	  quasars)
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Schurch, Done & DP (2009) 
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Waters, Kashi, DP et al. (2016)

Hubble 2006: Science Year in Review
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Computed	  pro<iles	  of	  UV	  resonant	  lines	  resemble	  
the	  observed	  pro<iles	  (strong	  single-‐peaked	  
emission	  lines	  for	  low	  and	  intermediate	  

inclinations;	  P-‐Cygni	  like	  lines	  for	  high	  inclinations).	  	  
BAL	  quasars	  should	  be	  X-‐ray	  weak	  because	  of	  the	  

shielding.
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Reverberation	  Mapping

DP, Stone, & Kallman (2000) 

DP & Kallman (2004) 

DP & Kurosawa (2010) 

DP et al. (2012) 

Schurch, Done & DP (2009) 

Sim, DP et al. (2010) 

Kashi, DP et al. (2013) 

Higginbottom, DP et al. (2014) 

Waters, Kashi, DP et al. (2016) D. Proga KITP 201728



Disk	  Winds

geometrically thin Keplerian disk (virialized)  

spherical supersonic wind (not virtualized)

aspherical, non-radial  rotating wind 
(launched from a virialized disk)

ld
vdt l

e

1−

= ρσ

Kashi, DP et al. 
(2013)
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Future

Outflows from stars, exoplanets, and clouds Disk winds from CVs, YSOs, and XRBs.

Winds in AGNs and PPDs Inflows and Outflows in GRBs and AGNs

Multi-frequency Radiation-
Magnetohydrodynamics 
(with photoionization)

D. Proga KITP 201730



Summary
– The	  inner	  and	  outer	  workings	  of	  accreting	  systems	  involve	  very	  many	  
processes	   (e.g.,	   in<lows	   and	   out<lows,	   atomic/molecular/dust	  
processes,	   irradiation,	  reprocessing,	  radiative	  transfer,	  magnetic	   <ield	  
effects,	  energy	  generation,	  its	  release,	  transport	  and	  dissipation).	  

– We	   have	   atomic	   and	   molecular	   data,	   computers	   and	   numerical	  
methods	   that	   allow	  us	   to	   develop	   and	   observationally	   test	   direct	   ab	  
initio	  models	  of	  mass	  out<lows	  (i.e.,	  that	  will	  include	  the	  object	  where	  
the	  out<lows	  originate	  from).	  	  

– Combed	  with	  present	  and	  future	  high-‐quality	  observations,	  numerical	  
R-‐MHD	   simulations	   will	   not	   only	   continue	   to	   provide	   us	   with	  
important	  insights	  about	  complex	  objects	  (test	  long-‐held	  assumptions	  
and	   assertions)	   but	   also	   allow	   to	   quantify	   various	   processes	   and	  
effects	  so	  that	  we	  can	  determine	  what	  is	  really	  most	  important	  (from	  
the	  theoretical	  as	  well	  as	  observational	  point	  of	  view).
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Monte	  Carlo	  photoionization	  and	  
radiative	  transfer	  calculations.

Detailed	   photoionization	   and	  
radiative	  transfer	  calculations	  help	  
to	   show	   how	   the	   radiation	   <ield	  
geometry	   and	   energy	   distribution	  
can	   affect	   the	   dynamics	   of	   a	   line	  
driven	   disk	   wind,	   e.g.,	   multiple	  
scattering	   as	   well	   as	   the	   EUV	  
photons	   from	  the	   inner	  most	  disk	  
can	  signi<icantly	  increase	  the	  wind	  
ionization.	   So	   the	   problem	   is	   not	  
just	  the	  direct	  irradiation.	  

	  The	  over-‐ionization	  is	  a	  major	  problem	  	  for	  all	  AGN	  
wind	  models,	  including	  MHD	  models.
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ABSTRACT

Estimating the mass of a supermassive black hole (SMBH) in an active galactic nucleus (AGN) usually
relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems
invalid in BLR models that consists of an accretion disk and its wind. The disk is likely Keplerian
and therefore virialized. However, the wind material must, beyond a certain point, be dominated
by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of
four different disk winds: an isothermal wind, a thermal wind from an X-ray heated disk, and two
line-driven winds, one with and the other without X-ray heating and cooling. For each model, we
check whether gravity governs the flow properties, by computing and analyzing the volume-integrated
quantities that appear in the virial theorem: internal, kinetic, and gravitational energies, We find
that in the first two models, the winds are non-virialized whereas the two line-driven disk winds
are virialized up to a relatively large distance. The line-driven winds are virialized because they
accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For
the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/ sin2 i.
Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly
when it conserves the gas specific angular momentum – as in the models considered here, than when
it conserves the angular velocity – as in the so-called magneto-centrifugal winds.
Keywords: accretion, accretion disks — hydrodynamics — methods: numerical — (galaxies:) quasars:

general

1. INTRODUCTION

Many astrophysical systems in equilibrium are virial-
ized. Examples range from objects that are in hydro-
static equilibrium, such as stars, planets, and intergalac-
tic medium, to dynamical systems such as planetary sys-
tems, binary stars, stellar globular clusters, and galaxies.
For such systems, the mass inside a sphere of a radius r
and a characteristic velocity v are related through the
well known equation

M(< r) = f
rv2

G
, (1)

where f is a factor that depends on the geometry and
dynamics. For example, in the case of Keplerian rota-
tion, f = 1 because the gravity and centrifugal forces are
equal, while in the case of supersonic accretion, f = 0.5
because the gravitational potential energy and kinetic
energy are equated. For such simple cases, f does not
change when it is integrated over some volume, even if
weighted by a non-uniform density. If the system is more
complicated, the density-weighted, volume-integrated f
could be dominated by the denser part of the flow.
It is often assumed that the broad line regions (BLRs)

in active galactic nuclei (AGN) are also virialized. This
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assumption cannot be directly verify because the BLRs
are spatially unresolved. However, the very compact-
ness of the BLRs and the broadness of the observed lines
suggest that the dynamics of the BLR gas is strongly
coupled to the gravity of the central supermassive black
hole (SMBH). Therefore, the assumption of virialization
has been used to determine the SMBH mass MBH, pro-
vided both v and r are known. In the case of AGN,
practically all the mass is concentrated in the center
with MBH being much greater than that of stars and
gas, therefore M(< r) = constant = MBH. The emis-
sion line width, ∆v, can be measured relatively eas-
ily and used as an estimate of v. Using reverber-
ation mapping, the distance r can be estimated via
r = cτ , where τ is the time delay for BLRs to respond
to changes in the continuum (e.g., Blandford & McKee
1982; Peterson 1993). This method has been used
in many AGN surveys for multiple emission lines
with different characteristic emission radii, and it has
been improved over the years (e.g., Ulrich et al. 1997;
Peterson & Wandel 1999, 2000; Peterson 2001,2004;
Kaspi et al. 2000; Kollatschny 2003; Bentz et al. 2009;
Pancoast et al. 2011; Hryniewicz & Czerny 2012; Shen
2013; Barth et al. 2013). It has also been suggested that
the BLRs are virialized based on the correlation between
the time delay and line width (e.g., Peterson & Wandel
1999, 2000; Onken & Peterson 2002; Kollatschny 2003;
Peterson et al. 2004).
Although the basic assumptions behind the above

mentioned method are very plausible, the method has
its limitations. For example, different BLR structures,
the radiation pressure, viewing angle, gravity due to
the host galaxy, and different methods for character-
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Table 1
Comparison of physics in the simulations analyzed in this work. References: Model 1. Giustini & Proga (2012); Model 2. Luketic et al.

(2010); Model 3. Proga (2003); Model 4. Proga & Kallman (2004).

Model Gravity Rotation Radiative gas Radiation Equation of Ltot/LEdd Units of
heating and cooling pressure state distance

1 Yes Yes No No Isothermal 0 GM/c2s
2 Yes Yes Yes No Adiabatic 0.03 GM/c2s
3 Yes Yes No Yes Isothermal 0.0015 rWD = 8700 km
4 Yes Yes Yes Yes Adiabatic 0.6 2GM/c2

of rWD. The total luminosity of the accretion disk and
WD is Ltot = 1.5× 10−3LEdd. The model computes the
radiation force due to lines using the intensity of the ra-
diation integrated over the UV-band only. The density
profile in the disk is ρ = 10−9(r/rWD)−2 g cm−3. The
model calculates the line force that drives winds from
a thin disk based on Proga et al. (1999). The resulting
outflow shows radial streamlines with very high veloc-
ities (few×103 km s−1) in high latitudes and very low
(few×10 km s−1) velocities at low latitudes. Here, the
vout,max/vK(r = 1) ratio is 1.99. Rescaling results from
Model 3 to AGN is not straightforward, in part because
it does not include some of the physical processes that
are essential in AGN, e.g., the X-ray ionization. There-
fore, our last model is an extension Model 3 that was
computed specifically for AGN.

Model 4: A line-driven wind with X-ray heating and
cooling (Proga & Kallman 2004). The model describes a
wind from a disk around a M = 108M⊙ SMBH. The dis-
tance in this model is given in units of the Schwarzschild
radius rs = 2GM/c2 = 3 × 1013 cm. The disk lumi-
nosity is LD = 0.5LEdd, and the luminosity of the cen-
tral engine is Lc = 0.1LEdd with 90% of the radiation
in the UV and 10% in the X-ray. The model computes
the radiation force due to lines using the intensity of the
radiation integrated over the UV-band only. The cen-
tral engine produces photons that can ionize the gas,
but its contribution as a source of radiation pressure
was excluded. The adiabatic index is γ = 5/3. The
gas density at the disk atmosphere and wind base is
10−12 g cm−3, and therefore the photo-ionization param-
eter is low (log ξ < −5) despite the strong radiation com-
ing from the center. This model includes self-shielding
of ionizing radiation. Dense clumps form close to the
center (“failed wind”) as a result of the over-ionization,
which provide shielding for the gas launched at large
radii. The disk wind is very fast (∼ 104 km s−1) at
low latitudes whereas at high latitudes, there is a low
density inflow. Here, the vout,max/vK(r = 1) is 0.13. As
shown by Proga & Kallman (2004) this class of models
well accounts for the properties of outflows observed in
broad absorption line quasars (see also Sim et al. 2010,
and references therein).

3. ANALYSIS METHODS

The simulations described above solve either hydrody-
namic or radiation+hydrodynamic equations in an Eu-
lerian form on a 2-D grid with axial symmetry. The
wind solution is given as the spatial distribution of lo-
cal quantities as a function of time. These quantities

are the density ρ, specific internal energy e, and velocity
v. Therefore the simulations provide all the necessary
information to compute the terms of the virial equation

ΦG = −2(E +K), (2)

where ΦG, E and K are the density-weighted, volume-
integrated quantities of gravitational potential φG =
GM/r, specific internal energy, and specific kinetic en-
ergy k = v2/2, respectively.
For Models 1–4, we compute the terms in the virial the-

orem. These models assumed axial symmetry, however,
the rotational component of velocity vϕ was implicitly
calculated, and it is used in our analysis. Following the
original papers that presented the simulations, we use
spherical polar coordinates.
We calculate the kinetic component of the virial factor

fk =
|φG|
2k

(3)

as a function of position. When e ≪ k, fk measures
where the flow is close to or largely deviating from viri-
alization. In this case fk ≃ 1 would indicate a virialized
region in the flow. We note that in some cases e can be
dominant, for example, in stars.
We calculate the density-weighted, surface-integrated

viral quantities using the following equation:

q̃i =

2π
∫

ϕ=0

π
∫

θ=0

qiρ
n sin θ dθ dϕ, (4)

where qi = (φG, e, k), and they are weighted by ρn. To
examine the effects of winds on observations, we take n =
1 for continuum fluorescence excitation line emission, and
n = 2 for recombination line emission and collisionally
excited line emission.
Finally, we compute the density-weighted, volume-

integrated quantities

Qi =

2π
∫

ϕ=0

π
∫

θ=0

r
∫

r=0

qiρr
2 sin θ dr dθ dϕ, (5)

where Qi = (ΦG, E,K) for qi = (φG, e, k), respectively.
Also, K = (Kr,Kθ,Kϕ) are the radial, meridional, and
rotational components of K, respectively.
We use the local properties of the wind to check if k

scales with radius the same way as φG, namely, if fk is
radius independent. If fk is constant, then it means that
Equation (2) will hold and the system is virialized. But
even if it is not constant, Eq. (2) can still hold when the
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scales with radius the same way as φG, namely, if fk is
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even if it is not constant, Eq. (2) can still hold when the
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in green) that corresponds to the failed wind. The right
panel shows that fk ∼ 1 in most of the volume.
Figure 4b shows similar results to Model 3 with regard

to the dominance of the radial and rotational compo-
nents. According to Figure 4c, the flow is completely viri-
alized up to the edge of the computational domain (r =
1500). This translates to ∼ 4.5 × 1016 cm for a SMBH
with 108M⊙. It is clearly seen that Kϕ is the dominant
component. The right panels show that Kϕ,p/|ΦG| re-
mains flat for any line of sight, and that Kϕ,p > Kr,p

for any value of θ. The scaling Kϕ,p/|ΦG| ∝ sin2 i is the
same as in Model 3. This suggests that the system would
be observed as virialized from any line of sight.
Analyzing Models 3 and 4, we find that, in the regions

where the wind is virialized, the scaling of fp with the
inclination angle is

fp ≡ |ΦG|/Kp =
1.32± 0.08

sin2 i
. (7)

Another issue in testing the virialization of winds is the
separation of winds from the dense disk. As a test, we
repeat the same calculation after excluding the equatorial
region with π/2 + θcut < θ < π/2 + θcut as follows:

Qi =

2π
∫

ϕ=0

π/2−θcut
∫

θ=0

r
∫

r=0

qiρr
2 sin θ dr dθ dϕ

+

2π
∫

ϕ=0

π
∫

θ=π/2+θcut

r
∫

r=0

qiρr
2 sin θ dr dθ dϕ.

(8)

We performed this test for Models 3 and 4, and found
that the winds are virialized in both of cases. Here we
show only the results for Model 4 as an example of this
test. Figure 5 shows the result of Model 4 with θcut = 5◦

(top row) and θcut = 25◦ (bottom row). This empha-
sizes the significance of high-density wind near the cen-
ter, which is shown in the left panel of Figure 4a in green.
When the integrated quantities are weighted by density,
it is seen that the wind itself is virialized, because f ≃ 1
even for θcut = 25◦.

5. DISCUSSION: UNVIRIALIZATION OF AN
OUTFLOW

To illustrate how a Keplerian flow becomes unvirial-
ized due to an outflow, we use the following analytic cal-
culation. We consider a gas element outflowing from a
point (r′ = r′0, z = 0) on the equator where the Keple-
rian velocity is vk = (GM/r′0)

1/2. A new position of the
element (r′1, z1) can be expressed by the distance l from
the original location and the inclination angle α mea-
sured from the equator (see top panel of Figure 6). As
a result of specific angular momentum conservation, the
rotational velocity of the gas at the new location would
be vϕ = (r′0/r

′
1)vk. We can calculate fk,ϕ = |φG|/v2ϕ, the

rotational component of fk, as a function of l and α:

fk,ϕ =
(r′0 + l cosα)2

r′0[(r
′
0 + l cosα)2 + (l sinα)2]1/2

. (9)

The solid lines in the bottom panel of Figure 6 show fk,ϕ
as a function of l for different values of α, for a launching

point of r′0 = 1. One can see that generally fk,ϕ is a weak
function of l. For example, at l = 10, fk,ϕ varies by a
factor of ∼ 1.5 at most for α = 70◦, and increases by a
factor of ∼ 11 for α = 10◦,
We also check another type of flow, where the con-

served quantity is not the angular momentum but in-
stead the angular velocity, as in the so-called magneto-
centrifugal winds (Blandford & Payne 1982). In this
case, vϕ = (r′1/r

′
0)vk. As an analogue of fk,ϕ, we cal-

culate

fk,ϕ,MC =
r′30

(r′0 + l cosα)2[(r′0 + l cosα)2 + (l sinα)2]1/2
.

(10)
The dashed lines in Figure 6 present fk,ϕ,MC as a function
of l for r′0 = 1 and different values of α. Comparing to
the hydrodynamical case, at l = 10, fk,ϕ,MC decreases
by a factor of ∼ 77 for α = 70◦, , while for α = 10◦ it
decreases and by a factor of ∼ 1300!
We find then that fk,ϕ,MC is a much stronger function

of l than fk,ϕ. This indicates that an angular velocity
conserving flow will become unvirialized much faster than
an angular momentum conserving Keplerian flow.
We find that line-driven winds (Models 3 and 4) stay

virialized over a long distance from the launching point,
because they have an extended base of accelerating re-
gion in the poloidal wind. Any quantity weighted by
density will be dominated by the contribution from
this dense base. In Model 4, the inner region of the
wind is particularly dense as it includes the failed wind
(Proga et al. 2000; Proga & Kallman 2004).
Our analysis suggest that the flow will remain virialized

under the following general conditions:

• The acceleration is vertical rather than radial (i.e.,
large α: see Figure 6).

• If α happens to be small, the flow better conserves
the specific angular momentum rather than the an-
gular velocity.

• The wind acceleration in the poloidal direction
should be slow so that the wind base will be dense.

As expected, there are cases where winds are not viri-
alized (e.g., Parker wind in Appendix A). However, if
the wind is launched from a virialized system such as a
Keplerian disk, the wind can appear as virialized to a dis-
tance greater than 10 times the launching radius (Figure
6). Therefore, our results support the assumption that
the BLRs are virialized up to a large radius.

6. SUMMARY

The assumption that the BLRs are virialized is com-
monly used to determine the mass of SMBHs. While it
is widely assumed that accreting gas is virialized, winds
are often considered to be non-virialized as the non-
gravitational forces break their connection to the central
SMBH. In the present work, we analyze simulations of
winds for four different cases, and show that the flow in
the line-driven disk wind “remembers” its origin – a Ke-
plerian disk – for a relatively long distance, and as such,
can be considered to be virialized.
We also performed the same analysis for accre-

tion/inflow simulations for all the models in Proga

Are	  disk	  winds	  virialized?

Kashi, DP et al. (2013) 
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of l than fk,ϕ. This indicates that an angular velocity
conserving flow will become unvirialized much faster than
an angular momentum conserving Keplerian flow.
We find that line-driven winds (Models 3 and 4) stay

virialized over a long distance from the launching point,
because they have an extended base of accelerating re-
gion in the poloidal wind. Any quantity weighted by
density will be dominated by the contribution from
this dense base. In Model 4, the inner region of the
wind is particularly dense as it includes the failed wind
(Proga et al. 2000; Proga & Kallman 2004).
Our analysis suggest that the flow will remain virialized

under the following general conditions:

• The acceleration is vertical rather than radial (i.e.,
large α: see Figure 6).

• If α happens to be small, the flow better conserves
the specific angular momentum rather than the an-
gular velocity.

• The wind acceleration in the poloidal direction
should be slow so that the wind base will be dense.

As expected, there are cases where winds are not viri-
alized (e.g., Parker wind in Appendix A). However, if
the wind is launched from a virialized system such as a
Keplerian disk, the wind can appear as virialized to a dis-
tance greater than 10 times the launching radius (Figure
6). Therefore, our results support the assumption that
the BLRs are virialized up to a large radius.

6. SUMMARY

The assumption that the BLRs are virialized is com-
monly used to determine the mass of SMBHs. While it
is widely assumed that accreting gas is virialized, winds
are often considered to be non-virialized as the non-
gravitational forces break their connection to the central
SMBH. In the present work, we analyze simulations of
winds for four different cases, and show that the flow in
the line-driven disk wind “remembers” its origin – a Ke-
plerian disk – for a relatively long distance, and as such,
can be considered to be virialized.
We also performed the same analysis for accre-

tion/inflow simulations for all the models in Proga

Kashi, DP et al. (2013) 
35 D. Proga KITP 2017


