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H I Reionization: The Movie

M. Alvarez
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Photoheating During Reionization

Each ionization 
deposits several 
eV in IGM

Expect >10,000 
K heating during 
reionization

13.6 eV in ionization

15 eV photon

1.4 eV kinetic energy
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The Reionization Process I

Limit #1: “Photon 
counting”

Ionizing photons 
escape each source, 
and form ionized 
bubbles in IGM

Bubbles grow and 
merge as more sources 
appear

Mesinger & Furlanetto (2007)
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Fig. 2.— Helium reionization histories. (a): Using the Hopkins et al. (2007d) luminosity
function, assuming C̄ = 0, 1, and 3 (dotted, solid, and dashed curves, respectively). (b):

Histories normalized so that zHe = 3. The thick curves (which all overlap) are identical to
those in (a). The upper and lower dot-dashed curves follow fcoll for mmin = mi and 10mi,

respectively; the thin dotted curves assume ζ ∝ m2/3
h with these same mmin.

When Was Reionization? (I)

Ingredients:  source 
luminosity function 

Poorly known for H I 
reionization, but well-
known for He II!

Quasars produce 
enough ionizing 
photons at z~3.6

Furlanetto & Oh (2008)
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What’s So Hard About the Emissivity?
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For each of these 
categories...

Star formation efficiency
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What’s So Hard About the Emissivity?

For each of these 
categories...

Star formation efficiency
Black hole formation 
efficiency
Metallicity, IMF, 
binarity, etc. of stars
Escape fraction of UV 
photons
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Modeling High-z Galaxies

Basic Picture: Gas 
inflow balanced by star 
formation and winds 
Comparison to 
observed luminosity 
function depends on:

Accretion rate
Wind loading
Dust Munoz (2012)
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Modeling High-z Galaxies

Basic picture
Star formation 
when Toomre Q~1
Leftover gas forms 
BH

Key parameter: rate 
of gas transport 
through diskMunoz & Furlanetto (2012)

Thin: Gas accretion rate
Thick: SFR
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Photon Counting

• Assume galaxies have 
fixed ionizing efficiency

• Isolated galaxies generate 
HII regions

• Clustered galaxies work 
together 

Neutral IGM

Ionized IGM

Galaxy
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Photon Counting

• Assume galaxies have 
fixed ionizing efficiency

• Isolated galaxies 
generate HII regions

• Clustered galaxies work 
together 
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Bubble Sizes: H I Reionization

Bubbles grow 
throughout 
reionization
Driven by source 
clustering: massive 
halos, big bubbles
LOTS of sources per 
bubble

xH=0.96

xH=0.70

xH=0.25
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Reionization:  Galaxy Populations

McQuinn et al. (2007); Furlanetto et al. (2004)
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Fig. 2.— Helium reionization histories. (a): Using the Hopkins et al. (2007d) luminosity
function, assuming C̄ = 0, 1, and 3 (dotted, solid, and dashed curves, respectively). (b):

Histories normalized so that zHe = 3. The thick curves (which all overlap) are identical to
those in (a). The upper and lower dot-dashed curves follow fcoll for mmin = mi and 10mi,

respectively; the thin dotted curves assume ζ ∝ m2/3
h with these same mmin.

When Was Reionization? (Ia)

Precise timing depends 
on recombination rate

Parameterized crudely 
by “clumping factor:” 
enhancement relative 
to uniform IGM from 
clumping: 

C=<n2>/<n>2

Furlanetto & Oh (2008)
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The Reionization Process II

Most recombinations 
are inside “Lyman-
limit systems”

Matters once (size of 
bubble) > (attenuation 
length)

Controls post-
reionization paths
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The Phases of Reionization
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The Meaning of Overlap

Gnedin (2000)

Overlap

Post-overlap

Pre-overlap
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The Meaning of Overlap

Furlanetto & Oh (2005)Gnedin (2000)

Overlap

Post-overlap

Pre-overlap
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The Meaning of Overlap

Furlanetto & Mesinger (2008)Gnedin (2000)

Reionization
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The Hidden Underworld of Clumping

Clumping depends on...

Pawlik et al. (2009)
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The Hidden Underworld of Clumping
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The Hidden Underworld of Clumping

Clumping depends on...

IGM temperature (and 
reionization history)

Self-shielding threshold 
(and amplitude of ionizing 
background)

Escape fraction

Morphology of 
reionization

But regardless of all these 
factors:  IT IS NOT 30!!!!!Pawlik et al. (2009)
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Observing Reionization

Galaxy surveys
The Lyman-α forest
CMB polarization
The Red Damping Wing
Quasar near zones
Lyman-α emitters
Small-scale CMB anisotropies
He II reionization as an analog
The spin-flip background
Diffuse line backgrounds
Temperature Evolution
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Securely Known Facts About Reionization

The Universe is now highly ionized and 
has been since z>5
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Securely Known Facts About Reionization

The Universe is now highly ionized and 
has been since z>5
It didn’t used to be so
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Hints About Reionization

The Universe was highly-ionized to z~6.2
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Hints About Reionization

The Universe was highly-ionized to z~6.2
The Universe was substantially neutral 
(xHI>0.2) at z~7
The Universe was mostly ionized at z~10
Star-forming galaxies (but not the ones 
we can see now) are responsible for this 
reionization
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Photoheating During Reionization

IGM Density

Furlanetto & Oh (2008)
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The Hidden Underworld of Photoheating

Increased IGM temperature (thus pressure) prevents accretion, via 
Jeans (or filter) mass 
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The Hidden Underworld of Photoheating

Increased IGM temperature (thus pressure) prevents accretion, via 
Jeans (or filter) mass 

Ignore if halo lies above IGM Jeans mass (~1010 Msun)
Completely dominates if halo lies below halo Jeans mass (~109 
Msun)

AND, it depends on...
Self-shielding
Recombinations and cooling
Amplitude and spectrum of ionizing background
Timing of accretion v. heating
“Pre-heating”
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But Reionization Is Only One Piece...

Every transition 
is potentially 
crucial!
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Dwarf Galaxies and First Stars

• Different luminosities 
constrain different 
processes

• large L (classical): 
Tvir > 105 K

• -5 > MV > -9 
(SDSS): HI cooling 
before zrei

• MV > -5 (SDSS): H2 
cooled stars

Classical

SDSS

Munoz et al. (2009)
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Conclusions

The timing of reionization is extremely difficult to 
predict
The early phases of reionization can be reasonably 
well-understood
The late phases of reionization are more difficult
Reionization is highly spatially inhomogeneous
Photoheating may leave interesting observable 
signatures, but its effects on galaxies are poorly 
understood
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Want To Know More?

Coming in January 2013 (or so) from 
Princeton University Press!
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