An Overview of Cosmological Reionization

Steven Furlanetto
UCLA
February 13, 2012

Outline

- Theoretical models of reionization
 - o "Photon-counting" and the emissivity
 - Recombinations and clumping
- Observations of reionization: What we "know"
- Photoheating
 - Potential measurements
 - Some implications

H I Reionization: The Movie

M. Alvarez

H I Reionization: The Movie

Photoheating During Reionization

- Each ionization deposits several eV in IGM
- Expect > 10,000
 K heating during reionization

The Reionization Process I

- Limit #1: "Photon counting"
- Ionizing photons
 escape each source,
 and form ionized
 bubbles in IGM
- Bubbles grow and merge as more sources appear

Mesinger & Furlanetto (2007)

When Was Reionization? (I)

- Ingredients: source luminosity function
- Poorly known for H I reionization, but wellknown for He II!
- Quasars produce enough ionizing photons at z~3.6

Furlanetto & Oh (2008)

- For each of these categories...
 - Star formation efficiency

- For each of these categories...
 - Star formation efficiency
 - Black hole formation efficiency

- For each of these categories...
 - Star formation efficiency
 - Black hole formation efficiency
 - Metallicity, IMF,
 binarity, etc. of stars

- For each of these categories...
 - Star formation efficiency
 - Black hole formation efficiency
 - Metallicity, IMF,
 binarity, etc. of stars
 - Escape fraction of UV photons

Modeling High-z Galaxies

- Basic Picture: Gas
 inflow balanced by star
 formation and winds
- Comparison to
 observed luminosity
 function depends on:
 - Accretion rate
 - Wind loading
 - o Dust

Modeling High-z Galaxies

Munoz & Furlanetto (2012)

- Basic picture
 - Star formation
 when Toomre Q~1
 - Leftover gas forms
 BH
- Key parameter: rate
 of gas transport
 through disk

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies generate HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies generate
 HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies generate
 HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies generate HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies generate HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies
 generate HII regions
- Clustered galaxies work together

- Assume galaxies have fixed ionizing efficiency
- Isolated galaxies
 generate HII regions
- Clustered galaxies work together

Bubble Sizes: H I Reionization

- Bubbles grow throughout reionization
- Driven by source clustering: massive halos, big bubbles
- LOTS of sources per bubble

Reionization: Galaxy Populations

McQuinn et al. (2007); Furlanetto et al. (2004)

When Was Reionization? (Ia)

- Precise timing depends on recombination rate
- Parameterized crudely
 by "clumping factor:"
 enhancement relative
 to uniform IGM from
 clumping:

$$\circ$$
 $C = < n^2 > / < n >^2$

Furlanetto & Oh (2008)

The Reionization Process II

The Reionization Process II

The Reionization Process II

- Most recombinations are inside "Lymanlimit systems"
- Matters once (size of bubble) > (attenuation length)
- Controls postreionization paths

The Phases of Reionization

The Meaning of Overlap

Gnedin (2000)

The Meaning of Overlap

Gnedin (2000)

The Meaning of Overlap

Gnedin (2000)

Furlanetto & Oh (2005)

The Meaning of Overlap

Gnedin (2000)

Furlanetto & Mesinger (2008)

Pawlik et al. (2009)

Clumping depends on...

Pawlik et al. (2009)

- Clumping depends on...
 - IGM temperature (and reionization history)

Pawlik et al. (2009)

- Clumping depends on...
 - IGM temperature (and reionization history)
 - Self-shielding threshold

 (and amplitude of ionizing background)

Pawlik et al. (2009)

- Clumping depends on...
 - IGM temperature (and reionization history)
 - Self-shielding threshold

 (and amplitude of ionizing background)
 - Escape fraction

Pawlik et al. (2009)

- Clumping depends on...
 - IGM temperature (and reionization history)
 - Self-shielding threshold

 (and amplitude of ionizing background)
 - Escape fraction
 - Morphology of reionization

Pawlik et al. (2009)

- Clumping depends on...
 - IGM temperature (and reionization history)
 - Self-shielding threshold

 (and amplitude of ionizing background)
 - Escape fraction
 - Morphology of reionization
- But regardless of all these factors: <u>IT IS NOT 30!!!!!</u>

Observing Reionization

- Galaxy surveys
- The Lyman-α forest
- CMB polarization
- The Red Damping Wing
- o Quasar near zones
- Lyman-α emitters
- Small-scale CMB anisotropies
- He II reionization as an analog
- The spin-flip background
- Diffuse line backgrounds
- Temperature Evolution

Securely Known Facts About Reionization

 The Universe is now highly ionized and has been since z>5

Securely Known Facts About Reionization

- The Universe is now highly ionized and has been since z>5
- o It didn't used to be so

• The Universe was highly-ionized to z~6.2

- The Universe was highly-ionized to z~6.2
- The Universe was substantially neutral $(x_{HI}>0.2)$ at $z\sim7$

- The Universe was highly-ionized to z~6.2
- The Universe was substantially neutral $(x_{HI}>0.2)$ at $z\sim7$
- The Universe was mostly ionized at z~10

- The Universe was highly-ionized to z~6.2
- The Universe was substantially neutral $(x_{HI}>0.2)$ at $z\sim7$
- The Universe was mostly ionized at z~10
- Star-forming galaxies (but not the ones we can see now) are responsible for this reionization

 Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...
 - Self-shielding

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...
 - Self-shielding
 - Recombinations and cooling

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...
 - Self-shielding
 - Recombinations and cooling
 - Amplitude and spectrum of ionizing background

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...
 - Self-shielding
 - Recombinations and cooling
 - Amplitude and spectrum of ionizing background
 - Timing of accretion v. heating

- Increased IGM temperature (thus pressure) prevents accretion, via Jeans (or filter) mass
 - Ignore if halo lies above IGM Jeans mass (~1010 Msun)
 - Completely dominates if halo lies below halo Jeans mass (~10⁹ Msun)
- AND, it depends on...
 - Self-shielding
 - Recombinations and cooling
 - Amplitude and spectrum of ionizing background
 - Timing of accretion v. heating
 - "Pre-heating"

But Reionization Is Only One Piece...

Every transition
 is potentially
 crucial!

Munoz et al. (2009)

- Different luminosities constrain different processes
 - large L (classical): $T_{vir} > 10^5 K$
 - -5 > M_V > -9 (SDSS): HI cooling before z_{rei}
 - $M_V > -5$ (SDSS): H_2 cooled stars

Munoz et al. (2009)

- Different luminosities constrain different processes
 - large L (classical): $T_{vir} > 10^5 K$
 - -5 > M_V > -9 (SDSS): HI cooling before z_{rei}
 - $M_V > -5$ (SDSS): H_2 cooled stars

Munoz et al. (2009)

- Different luminosities constrain different processes
 - large L (classical): $T_{vir} > 10^5 K$
 - -5 > M_V > -9 (SDSS): HI cooling before z_{rei}
 - $M_V > -5$ (SDSS): H_2 cooled stars

Munoz et al. (2009)

- Different luminosities constrain different processes
 - large L (classical): $T_{vir} > 10^5 K$
 - -5 > M_V > -9 (SDSS): HI cooling before z_{rei}
 - $M_V > -5$ (SDSS): H_2 cooled stars

Conclusions

- The timing of reionization is extremely difficult to predict
- The early phases of reionization can be reasonably well-understood
- The late phases of reionization are more difficult
- Reionization is highly spatially inhomogeneous
- Photoheating may leave interesting observable signatures, but its effects on galaxies are poorly understood

Want To Know More?

The First Galaxies in the Universe

Abraham Loeb and Steven R. Furlanetto

 Coming in January 2013 (or so) from Princeton University Press!