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Invisible galaxy said likely made of dark matter
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RMS mass overdensity for ACDM and WDM

e DGs are DM
laboratories: probe
the power spectrum
on small scales and
offer a unique test of
the particle nature of

n=1, a,ﬂO.Q5

dark matter. B m, = 3.0 keV
—— e my = 1.5 keV
m 0.75 keV
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® DGs probe of the epoch of
first light: first generation of
cosmic structures to go
nonlinear = responsible for
the reionization and chemical
enrichment of the universe.

http://home.fnal.gov/~gnedin/
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z=11.9
800 x 600 physical kpc

® DGs are the building
blocks of more massive
galaxies: their remnants
provide a powerful test o
of the hierarchical |
assembly of cosmic
structures.

Diemand, Kuhlen, Madau 2006
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® Surviving DG satellites
in the halo of the MW
provide an excellent
laboratory for indirect
detection of DM.

All-sky maps of the Sommerfeld-enhanced annihilation
surface brightness from all VLIl DM particles.
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Two main “DG Problems” (which may or may not be related)

|) Missing Satellite Problem:

discrepancy between the relatively
small number of satellite galaxies

Ursa Minor

known to be orbiting the Milky Way Sy

UMall

g

(~20) and the vastly larger number segeiy

of dark matter subhalos seen in N- Milky Way

body “zoom-in” cosmological @im‘
: . : ~ .

simulations (Moore et al. 1999; -

Klypin et al. 1999; Diemand et al.
2007,2008; Springel et al. 2008).

Like many
overachievers, PGs have
so far failed fo live up to
our expectations....

J. Bullock
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From Fermi-LAT Sensitivity to DM Annihilation in Via Lactea Il Substructure

xe q
q - T2y
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(a) DN Host Halo <ogy> = 3 % 10726 cm? Sfll ) DM Host Halo + DM Diffuse

Anderson et al. 10 S=0, mx=100 GeV

- B
0 | 2 3 4 5 6 7 8 9 00 04 08 12 16 20 24 28 32 36 40
(¢) Galactic + Extragalactic (d) Resolved Subhalos

All-sky log(counts) maps for a WIMP subhalo annihilation signal and the three background
sources for 10 years of Fermi-LAT orbit. (a) DM host halo, (b) DM host halo + DM diffuse, (c)
Galactic + extragalactic, and (d) resolved subhalos.
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From Fermi-LAT Sensitivity to DM Annihilation in Via Lactea Il Substructure
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(¢) Galactic Extragalactic (d) Resolved Subhalos

Things I'd like to hear more about:
annihilating DM and constraints from Fermi!
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Cleaned

Cleaned

Potential perturbations by DM
substructures produce anomalies
(compared to a smooth mass
distribution) in the relative
magnifications of strong gravitational

lenses (Metcalf & Madau 01, Chiba 02). T oot

Tufbshek et al. (1994)

Flux ratio anomalies are observed in
multiply-imaged lensed QSOs.

 — foe = 0.25R/ry0, Mao et ol. (2004),
- — six holoes in 18 projections overoge
| w f,,, Dolol & Kochonek (2002)
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Is there enough substructure in CDM N-body
simulations to cause the observed flux anomalies?

~YES (e.g. Diemand et al 08; Metcalf & Amara [2)

NO (e.g. Maccio et al 06; Xu et al 09, | |)

Sensitivity to: ellipticity of lens, intergalactic small-
scale structure, baryons, small # of lensed QSO:s...

New technique: surface brightness anomalies in
bright Einstein rings (Vegetti & Koopmans 09)
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Is there enough substructure in CDM N-body
simulations to cause the observed flux anomalies?

~YES (e.g. Diemand et al 08; Metcalf & Amara [2)

NO (e.g. Maccio et al 06; Xu et al 09, | |)

Sensitivity to: ellipticity of lens, intergalactic small-
scale structure, baryons, small # of lensed QSO:s...

New technique: surface brightness anomalies in
bright Einstein rings (Vegetti & Koopmans 09)

Things I'd like to hear more about:
flux anomalies in CDM vs. WDM
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A solution to the MSP within CDM

efficiencies in small dark matter

requires extremely low star formation| _j 5

subunits. ) —<
§—2.5
=
Are MW satellites any different than [ w -3
7 —
field DGs! a5
—4
Particle Tagging Technique (Rashkov et al. } 4 5

|2; Cooper et al. |0): subset of VLII DM

particles in each of 3,200 progenitor
subhalos is tagged as stars at infall, when
star particles acquire a stellar mass, an age,
and a metallicity. Subsequent evolution is
purely photometric and kinematical in
character, as the collisionless stellar
populations age and are accreted and

disrupted in a “live host”.
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— \ 3
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A solution to the MSP within CDM T (AN
requires extremely low star formation| _igFE =
efficiencies in small dark matter . -
subunits. TRE ANE
2;_ :_ u .E'
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Are MW satellites any different than [ w =3 [ ,.I" E
) ~ - ]

field DGs!? _35 [ f -
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Behroozi et al. 10
Particle Tagging Technique (Rashkovetal. 45 Bovvdfiion b Lo in b ey

|2; Cooper et al. |0): subset of VLII DM 9 10 11 12 13 14

particles in each of 3,200 progenitor log My;; [Mo]
subhalos is tagged as stars at infall, when
star particles acquire a stellar mass, an age,
and a metallicity. Subsequent evolution is
purely photometric and kinematical in
character, as the collisionless stellar
populations age and are accreted and
disrupted in a “live host”.
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DM STARS
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STARS
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Luminosity function of VLII satellites detectable by the SDSS

1\Iobs (MV)
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(Koposoy et al. 09)
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Luminosity function of VLII satellites detectable by the SDSS

10 """"" re ]

LF of knpwn MW satellites
(Koposoy et al. 09)

~— L 1 '

> -
=
14 Lack of Magellanic
1 [Cloud equi
Z i | o/ in theVlfqllwlllaallgntS
Shaded region marks # |}
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from 2,000 randomly ™ e — ' ——
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of the VLIl halo. My

TILHMA: SF efficiencies of field DGs vs MW
satellites = internal processes determine M-/My

Tuesday, February 14, 12



DG Formation with H;-Regulated SF

Star formation correlates

. > ) . strongly with the molecular
M, = esz t_ff_ / SF inefficient at low 2 and Z; content of a galaxy

fu, = fu,(Xg, Zg, J1w) SR S

2 . . .
FUV+24um .

I
-

log SFR surface density
log Zgm [Mo yr™' kpe™]

. . Bigiel et al. 08 |
o - IVAINTER DUVAPS WAPIOW IPIr BT IPAAd IO
-1.0-05 0.0 05 1.0 1.5 20 25
log B, [Me pc”]
log H2 surface density

e.g. Robertson & Kravtsov 08; Gnedin et al. 09; Kuhlen et al. 12
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Stellar mass fraction f« vs. total halo mass in a simulation
with standard SF (left) and with H»-regulated SF (right) at
z=4.

A comparison of the baryonic structure of a DG halo
at z = 4.The stellar content in greatly suppressed in

the KMTO09 low mass halo. (From Kuhlen et al. 2012.)

halo0185: M, = 5.8 x10” M .
M,=33x10°M_. M,=4.0x10" M.

Ax=76 pc @ z=4

[T
10 100 10° \ 4
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halo0185: M, = 5.8 x10” M .
M,=33x10°M_. M,=4.0x10" M.

A 4 I |
10° 10*°
M, I\I _J

Stellar mass fraction f« vs. total halo mass in a simulation
with standard SF (left) and with H»-regulated SF (right) at
z=4.

-
TILHMA: Inefficient SF in DG halos as a
plausible explanation for the
substructure problem

A comparison of the baryonic structure of a DG halo
at z = 4.The stellar content in greatly suppressed in

the KMTO09 low mass halo. (From Kuhlen et al. 2012.)
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. . . 100 :IIII||III|IIII|IIII|IIII|IIII|IIII|IIII|IIII:
Can DGs reionize the universe! . |~ :
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http://www.ucolick.org/~pmadau/CUBA/HOME.html
CUBA

CosMIC ULTRAVIOLET BACKGROUND

A cosMOLOGICAL 1D RADIATIVE TRANSFER CODE BY
FRANCESCO HAARDT AND PIERO MADAU

oooyee

L ontacor web

CUBA is a radiative transfer code that follows the propagation of hydrogen and
helium Lyman continuum radiation through a partially ionized and clumpy
intergalactic medium. The only sources of ionizing radiation included in CUBA
are star-forming galaxies and quasars.
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-/Iwww.ucolick.org/~pmadau/CUBA/HOME.html
CUBA

CosMIC ULTRAVIOLET BACKGROUND

A cosMmoLOoGICAL 1D RADIATIVE TRANSFER CODE BY
FRANCESCO HAARDT AND PIERO MADAU

TILHMA: SFH, z~6 QSOs, fesc(z), enough UV
to ionize the universe If <fesc>~0.5 at high-z?
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http://www.ucolick.org/~pmadau/CUBA/HOME.html
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2) Core-Cusp Problem: 1os L .. '7 DM-dominated
most observed DGs in the field THINGS DGs

have slowly rising rotation curves
implying a near constant-density

I I]l]lll
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than the cuspy profiles predicted Q
by CDM. : — .— :\;Zwb(eztgf?tskm S\q) :
O IC 2574 A DDO 154 O DG1
Governato et al. 10 [ [1N0C 2366 77000 53 19 062

10-5 =0OHol

7T

l.l.lll

1009

L lllllll

e Ohetal Tl

Pontzen & Governato 12 F\’/on_3

o

AE, 1“& / . :_ — 5

1.Small energyloss 2. Orbit expands in
shallow potential

2 ' i
L
g ot LIE
150 Gyrs -2 g =§|HHHJ
= g

Time

Tuesday, February 14, 12



2) Core-Cusp Problem: 1os L .. '7 DM-dominated
most observed DGs in the field THINGS DGs

have slowly rising rotation curves
implying a near constant-density

I I]l]lll
1 lllllll

T

core (de Block et al 10) rather S 1o [T ~
than the cuspy profiles predicted Q o (> o gt
- o— NFW (< 90 km's—) -
by CDM. - — — ISO best fits h
i O IC 2574 A DDO 15
Governato et al. 10 2 e fﬁ‘;?di"; —
10-5 =0OHol

1T

l.l.lll

1009

L lllllll

101
Pontzen & Governato 12 R’/R’Q3

N2

x ~x
1.Small energyloss 2. Orbit expands in
shallow potential

Ohetal Tl

o

2 ' i
i
g ot WY
150 Gyrs -2 g %Q_HHHH
= g

Time

Tuesday, February 14, 12



Enrichment of the IGM by DG ouflows at z=3

log(Z/Z,) log (p/<p>)
40 35 30 -25 20 -15 -10 05 0 1 2 3 4 5 6

Shen et al. 12



Simulated MWV dwarfs too dense compared to observations

40 L L} L] L} L] L) L] L) L] L]
Vien > 30 km s top 10 V. .(2=0)

max

Boylan-Kolchin 12 1
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Simulated MWV dwarfs too dense compared to observations

Vien = 30 km s i_ top 10 V., (2=0)

1Hax

~ Boylan-Kolchin 12 1

04 0.6 08 10
r kpc|

TILHMA: SN feedback as a plausible
explanation for the low inferred
densities of MW dwarfs?
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THE END
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