Dwarf galaxies: probes of cosmology on small scales

Amina Helmi

Outline

- Introduction: cosmological relevance and recent findings
- Internal dynamics:
 - Schwarzschild Modeling of Sculptor
- Dynamical evolution
 - The morphologies of dwarfs in Λ CDM
- Conclusions

Special thanks to:

Nearby Dwarf Galaxies

-sculptor dSph

Dwarf Galaxies in the Local Group

Outer regions: dominated by gas rich quiescently evolving dwarf irregulars

The nearest dwarf galaxies

- Very faint systems: 100 10⁷ Lsun
- Dynamical mass estimates: $10^7 10^9$ Msun
- Most DM dominated systems known
 - Dynamical modeling can neglect the effect of baryons
 - Probe the innermost regions (constraints on cusps vs cores)

- Contain very old populations
 - windows into the early universe
 - Reionization
 - Relation to galactic building blocks?

MW satellites

 Recent years huge data growth: MOS on 4m & 8mclass telescopes

WHT: Kleyna et al (Draco, Umi); VLT: Battaglia et al (Scl, Fnx, Sex) - Koch et al. (Leo I, Leo II); Magellan & MMT: Walker et al (7 dSph); Munoz et al (Carina)

- Latest results:
 - Fairly flat velocity dispersion profiles

Walker et al (2007)

MW satellites

Latest results:

- mass scale within 0.3 kpc similar (also inside $r_{1/2}$; Wolf et al 2010)
- Indicative of a common (minimum or fundamental) mass scale?
 - Expected in LCDM?

- Inner slope and overall density profile?
- Dynamics and formation path?

Internal Dynamics

Dynamical Modeling: Jeans Equation

For stationary and spherically symmetric systems

$$\frac{\mathrm{d}}{\mathrm{d}r}(\nu\sigma_{\mathrm{r}}^2) + \frac{2\beta}{r}\nu\sigma_{\mathrm{r}}^2 = \nu g$$

•Density of tracer population: V(r); velocity anisotropy β

$$\beta = 1 - \sigma_{\theta}^2(r) / \sigma_{\rm r}^2(r)$$

•Underlying potential: $\phi(r)$

$$g = - d\Phi/dr$$

Observations give projection of the velocity ellipsoid along the l.o.s

$$\sigma_{\text{los}}^2(R) = \frac{2}{I(R)} \int_{R}^{\infty} \left(1 - \beta \frac{R^2}{r^2} \right) \frac{\nu \sigma_{\text{r}}^2 r}{\sqrt{r^2 - R^2}} \, dr$$

•Surface brightness profile of the tracer population: I(R)

MW satellites: Jeans dynamical modeling

- (Most) Jeans modeling:
 - uses 2nd moment only (see Lokas et al (2005) w/4th moment on Draco)
 - Requires assumption of velocity anisotropy profile
- Strong degeneracies:
 - cannot distinguish between core & cusp

Schwarzschild models

- Integrate orbits in a given potential, and find their weights such that the observables (surface brightness, 2nd and 4th velocity moments) are reproduced
- Best model obtained via max likelihood, and this gives best fit parameters of the gravitational potential, as well as distribution function (anisotropy) of the model

Testing the modeling

 Mock Sculptor: same # of stars, similar velocity dispersion, assumed tangential anisotropy in an NFW DM halo

Breddels et al. 2012

- •Recover input values
- •Inner slope is not so well-constrained but larger samples help

Schwarzschild model of Sculptor

- For Sculptor we assume first NFW profile and derive the mass within 1kpc and the scale radius
 - •i.e. we vary systematically these parameters, and find the combination of orbits that minimizes the chi-sq

•Data are from Battaglia et al. (2008) and Walker et al (2009); ~ 2400 member stars

Breddels et al. (2012)

Sculptor's dynamical model. I

- The mass within I kpc is very well constrained:
 - $8.5^{+0.82}_{-0.75} \times 10^7 \text{ Msun}$
- The scale radius is more uncertain: 1.62 +1.13 -0.67 kpc
- The implied concentration ~ 15

 We can use a prior on massconcentration, and this restricts possible values of r_s

Sculptor's anisotropy profile

The anisotropy is nearly flat and tangentially biased

Sculptor's dynamical model. II

If we allow the inner slope to vary:

- Very steep cusps are ruled out (α < -1.5)
- The logarithmic slope of the density is -2 at ~ I kpc
- The anisotropy profile is similar (beta ~ cst < 0)

Results from Schwarzschild model of Sculptor

- NFW profiles fit well; M(< 1 kpc) determined within 10%, concentration c ~ 15
- Orbital structure: anisotropy is tangentially biased (formation?)
- gNFW we are able to rule out very cuspy (< -1.5) inner slopes.
 - Larger samples (at least 10k stars) would be very helpful
 - Possible to distinguish core and cusp

Dynamical evolution of dwarf galaxies in LCDM

Initially... 2 kpc What happened?? It merged with a dark satellite! 2 kpc ...at the end

Dark satellites and the morphologies of dwarf galaxies

- (Dark) satellites dynamically perturb disk galaxies
 - E.g heating of "disks", thick disk formation, etc
 - Most focus so far on Milky Way-like galaxies
- Substructure mass function in LCDM is scale-free
 - All galaxies expected to be surrounded by dark matter satellites
- Galaxy formation is not self-similar
 - Dwarf galaxies are inefficient at forming stars; have very high M/L
 - Their satellites (M < 5×10^8 Msun) will be dark
 - · Gas cooling inefficient and inhibited because of e.g. reionization
- Dynamical perturbations by dark satellites are 100x more dramatic on disky dwarf than on giant galaxy
 - Merger with Msat/Mvir = 0.2 is a major merger for the disk dwarf: Msat/Md ~ 20!

Estimation of the structural changes

- Accretion of satellite onto disk leads to its puffing and heating, and increase in scale-height $\Delta H/R_d \sim M_{sat}/M_{disk}$ (Toth & Ostriker 1992)
- Case w/gas, and using galaxy efficiency $\eta_{gal} = M_{disk} / (fb \times M_{vir})$, the relative change

$$\Delta H/R_d = \alpha (I - f_{gas})/\eta_{gal} (M_{sat}/M_{vir})$$

- Important factors:
 - Gas fraction: f_{gas}
 - Galaxy efficiency: η_{gal}
 - Spectrum of satellites/perturbers: M_{sat}/M_{vir}

Modeling galaxies

- SA model + Aquarius simulations to study properties of galaxies from dwarfs to giants (De Lucia & Helmi 2008; Li et al. 2010; Starkenburg 2011)
 - Good agreement in LF of Milky Way satellites; internal properties (scaling relations, SFHs...);
 galaxies of given luminosity in the right dark matter mass halos
 - Relevant (here) physical processes: feedback, reionization, no cooling in halos below atomic H limit

Factors affecting changes. I

Gas fraction:

- Cold gas content increases with decreasing virial mass
- Isolated dwarfs tend to be more gasrich than field giants
 (More inefficient in SF)

Galaxy efficiency:

- Low mass objects are more inefficient at collecting baryons
 (UV background, feedback, ...)
- For L* → $η_{gal}$ ~ 30 60%
- For dwarfs $\rightarrow \eta_{gal} \sim 1 5\%$
- Dwarfs have higher M/L

Factors affecting changes. II

Mass spectrum of perturbers:

- # of encounters with an object of a given mass-ratio (at pericentre): dN/dx
- This function is within uncertainties scale-independent
 - Like mass-function (Springel et al. 2008)

Example:

- A dwarf galaxy with $\eta_{gal} \sim 5\%$ experiences many more encounters with Msat = Mdisk
- MW-like galaxies has a 10x smaller probability

Change in scale-height

- Since spectrum of perturbers is scale-free, changes depend mostly on f_{gas} and η_{gal}
- For dwarf $(M_{vir} \sim 10^{10} \text{ Msun})$ with f_{gas}^{MW} , same Msat/Mvir encounter is 100x more damaging

Msat/Mvir = 0.05, $\Delta H/R_d \sim 2.7$ negligible for MVV

- When gas fraction is high, perturbations will not lead to significant heating
 - But they can lead to starbursts

$$\Delta H/R_d = \alpha (I - f_{gas})/\eta_{gal} (M_{sat}/M_{vir})$$

Observations

Apparent axis ratios for isolated late-type galaxies

Doyle et al (2005), Karachentsev et al. (2004) Geha et al. (2006)

There are no "thin" disky dwarfs: spheroidal/irregular morphologies

b/a increases towards fainter luminosities

True axis ratios for edge-on disks (Yoachim & Dalcanton 2006)

Thick disks are more prominent/common for lower mass systems

Implications/Summary

- Other mechanisms can explain increase in thickness for fainter galaxies temperature floor, random vs rotation comparable...Kauffman et al. 2007; Robertson & Kravtsov 2008
- The satellites of dwarf galaxies will be mostly dark and mergers lead to drastic morphological changes
 - Inefficient SF in dwarf implies lower Md, more often comparable to Msat
- Could explain
 - Isolated dwarf spheroidals: merger(s) of a disky dwarf with a dark satellite
 - Isolated starbursting dwarf galaxies: merger of a gas rich dwarf with a dark satellite
 Depending on orbital parameters, mass-ratio, the increase in SFR can be very significant (see poster by Starkenburg); could explain BCDs (even with several nuclei)
- In LCDM, dark satellites may well be responsible for the rich variety of morphologies, and for the different types, of dwarf galaxies

Thank you!