Core-mantle coupling

H-C. Nataf University of Grenoble and CNRS

Nutation data

July 8, 2008

Retrograde Free Core Nutation

$$K^{CMB} = \frac{\Gamma}{iI\delta\omega_{M}}$$

$$\operatorname{Im}(K^{CMB}) = (1.85 \pm 0.1) \cdot 10^{-5}$$

Matthews et al, 2002

Coupling mechanisms

July 8, 2008 KITP Dynamos

A camel thru the eye of a needle

- To explain the observed dissipation, one needs:
- Magnetic coupling: a lowermost mantle with the electric conductivity of the core and a B_r^{rms} of 0.69 mT (only 0.31 mT observed I<13)
 - Viscous coupling: a core with a viscosity of 0.03 m²/s
 (only 7 10⁻⁶ m²/s expected)
 - Inertial coupling: a stress of 10^{-3} Pa (while $\rho V^2 = 10^{-4}$ Pa)

Deleplace & Cardin, 2006 Buffett & Christensen, 2007