Discussion on Alignment and Cross-Helicity Annick Pouquet, NCAR

- 1 - The growth of global and local v.B correlations and the quenching of nonlinearities in NS and MHD
- 2 - Different energy spectra when v.B correlations are strong
- 3 - Equipartition- and correlation- defects have steeper spectra
- 4 - Third-order flux scaling laws and compatibility relations

[1] Quadratic invariants $(v=\eta=0)$ with direct cascades

* Energy: $Q_{1}=E^{\top}=1 / 2<v^{2}+B^{2}>$
* Cross helicity: $Q_{2}=H^{C}=<$ v. $B>$ (Woltjer, 1958)

One normalized correlation coefficient:

$$
R_{2}(\mathbf{x})=Q_{2} / Q_{1}=v . B /\left[v^{2}+b^{2}\right]=H^{c}(\mathbf{x}) /(2) E^{\top}(\mathbf{x})
$$

Mid 80's: Growth of the correlation coefficients, viewed as a long-term process
(Dobrowolny et al.; Frisch etc.; Montgomery and Matthaeus etc.)
(selective decay, dynamic alignment)

[1] Quadratic invariants $(v=\eta=0)$ with direct cascades

* Energy: $Q_{1}=E^{\top}=1 / 2<\mathrm{v}^{2}+\mathrm{B}^{2}>$ and cross helicity: $\mathrm{Q}_{2}=\mathrm{H}^{\mathrm{C}}=<\mathrm{v} . \mathrm{B}>$ (Woltjer, 1958) Normalized correlation coefficients:
$R_{2}(\mathbf{x})=Q_{2} / Q_{1}=\mathbf{v} . \mathbf{B} /\left[v^{2}+b^{2}\right]=H^{c}(\mathbf{x}) /(2) E^{\top}(\mathbf{x})$
Mid 80's: Growth of the correlation coefficients, viewed as a long-term process (Dobrowolny et al.; Frisch etc.; Montgomery and Matthaeus) (selective decay, dynamic alignment)

Point-wise growth on a "fast" timescale:
 $D_{t}(v . B)=B \cdot \nabla\left[-p+v^{2} / 2\right]$
 (Matthaeus et al., PRL 100, 2008)

Batchelor analogy between vorticity ω and induction: v. ω follows the same equation

Two-dimensional case

Kinetic helicity: Moffatt, ...

1536^{3} decay run Zoom on a structure early phase

$\stackrel{\text { Vorticity \& current, }}{\longleftrightarrow}$
and $\cos (\mathrm{v}, \mathrm{B})$
when strong
w

3D run: Mininni et al.,, Phys. Rev. Lett. 97, 244503 (2006); see also PRL 99, 254502 (2007).

[2] Energy spectra in the presence of v-B correlations

Say that $\mathrm{E}^{\top}(\mathrm{k}) \sim \mathbf{k}^{-\alpha}$
Note on inertial index α :
Kolmogorov (K41) or Alfvénic (IK) or weak turbulence (WT); k can be k_{\perp}
(intermittency corrections are not considered here)

Elsässer variables $\mathbf{z}^{ \pm}=\mathbf{v} \pm \mathbf{b}$ with spectra $\mathrm{E}^{ \pm}(\mathrm{k})=\left[\mathrm{E}^{\top}(\mathrm{k}) \pm \mathrm{H}^{\mathrm{c}}(\mathrm{k})\right]$

$$
\begin{array}{llll}
& \mathrm{E}^{+}(\mathrm{k}) \sim \mathrm{k}^{-p} & \text { and } & \mathrm{E}^{-}(\mathrm{k}) \sim \mathrm{k}^{-\mathrm{m}} \\
\text { with } & \mathrm{m}+\mathrm{p}=2 \alpha & & \text { (e.g., } m+p=3 \text { for the IK case) }
\end{array}
$$

EDQNM closure, phenomenologies, numerical simulations, and more recently weak turbulence theory Mid '80s:

Frisch etc.
~ 15 years later, for weak turbulence: Galtier et al., Goldreich and Sridhar

[2] Energy spectra in the presence of v-B correlations

$\boldsymbol{\operatorname { c o s }} \theta$
Elsässer $\mathbf{Z}^{ \pm}=\mathbf{V} \mathbf{\pm} \mathbf{b}$
$E^{+}(k) \sim k^{-p} \quad E^{-}(k) \sim k^{-m}$

2D MHD direct numerical simulations, decay runs

m

FIG. 12. Inerthal fange spetral eqponents m^{*} and m^{-}verses the lithal

[3] Residual energy and cross-helicity spectra

With $E^{\top}(k) \sim k^{-\alpha}$, what is the spectral density $\mathrm{H}^{c}(k)$?
$H^{c}(k)$ is steeper than $E^{\top}(k)$:
$H^{c}(k) \sim k^{-2}$ when $E^{\top}(k) \sim k^{-3 / 2}$ (low global $v-B$ correlation)
[EDQNM, Grappin et al., A\&A 105, 1982)]

Defect of Alfvénicity as measured either in the (v, B) or in the $\left(\mathrm{z}^{+}, \mathrm{z}^{\mathrm{z}}\right)$ variables:
Differential Δ_{1} in (v, B) energies, assumed small : $E^{R}=\left|v^{2}-B^{2}\right|$
Differential Δ_{2} in (,+-$)$ energies, assumed small : $\mathrm{H}^{\mathrm{c}}=\left|\mathrm{E}^{+}-\mathrm{E}^{-}\right|$
$\Delta(k)=\sim k^{-r} \sim\left[\tau_{A} / \tau_{N L}\right]^{2} E^{\top}(k)$
hence: $r=2 \alpha-1 \quad\left(r=2\right.$ for $\alpha=3 / 2$: $E^{R}(k) \sim k^{-2}$ and $\left.H^{c}(k) \sim k^{-2}\right)$

[4] Two coupled scaling laws

Structure function for $\mathbf{F}: \delta \mathbf{F}(\boldsymbol{I})=\mathbf{F}(\mathbf{x +} \boldsymbol{I})-\mathbf{F}(\mathbf{x}) \quad$ (longitudinal $\left.\delta F_{\mathrm{L}}(\mathrm{r})=\delta \mathbf{F} . \boldsymbol{\|} \mid \boldsymbol{\|}\right)$. Energy and cross-helicity invariance lead to flux relationships:
$\left\langle\delta v_{L}\left[\delta v_{i}^{2}+\delta b_{i}^{2}\right]>-2<\delta b_{L} \delta \mathbf{v} \cdot \delta \mathbf{b}>=-(4 / d) \varepsilon^{\top} /\right.$
$-\left\langle\delta b_{L}\left[\delta v_{i}^{2}+\delta b_{i}^{2}\right]\right\rangle+2\left\langle\delta v_{L} \delta \mathbf{v} . \delta \mathbf{b}>=-(4 / d) \varepsilon^{c} /\right.$
with $\varepsilon^{\top}=-d_{t} E^{\top}=-d_{t}\left(E^{V}+E^{M}\right)$ and $\varepsilon^{c}=-d_{t} H^{C}=-d_{t}<v$.b>
(d is the space dimension)

- Either $\delta v \sim \delta b \sim \mu^{1 / 3}$, or else v-B correlations must play a role

and ...

Boldyrev et al., 2006
The role of v - B correlations can be modelized as:
$<\delta \mathrm{v}_{\mathrm{L}}(\Lambda) \delta \mathrm{b}_{\mathrm{i}}^{2}(\mathrm{I}) \theta(\Lambda)>+\ldots=-(4 / 3) /$
where $\theta=(\mathbf{v}, \boldsymbol{B})$
$\delta \mathrm{v} \sim \delta \mathrm{b} \sim \mu^{1 / 4} \sim \theta$
Hence, there is compatibility between the $-3 / 2$ spectral law and the exact flux scaling laws

and yet another compatibility remark

Differential in angle: $\Delta \mathrm{a}=|\cos \theta-1| \sim \theta^{2}$
$H^{c}(k) \sim k^{-2}$ hence $k H^{c}(k) \sim k^{-1} \sim / \sim v_{l} b_{1} \theta^{2}$,

With $v_{1} \sim b_{1} \sim \mu^{1 / 4}$, then θ must scale as $\sim \mu^{1 / 4}$ as well in order to satisfy $\mathrm{H}^{\mathrm{c}}(\mathrm{k}) \sim \mathrm{k}^{-2}$.

In other words, the spectrum $H^{c}(k) \sim k^{-2}$ and the $\theta \sim \mu^{1 / 4}$ scaling are also compatible

Thanks!

