The importance of density stratification in simulations of giant planets

Gary A Glatzmaier

University of California, Santa Cruz

Anelastic approximation

Subsonic:

$$v^2 << c^2$$

Small thermodynamic perturbations: $T = \overline{T}(r) + T'(r, \theta, \phi, t)$ $|T'| << \overline{T}$

$$T = \overline{T}(r) + T'(r, \theta, \phi, t)$$

$$|T'| \ll \overline{T}$$

Reference state: only a function of r,

hydrostatic equilibrium,

adiabatic (usually)

$$\nabla \bar{p} = -\bar{\rho} \nabla \overline{\Phi}$$

$$\nabla \overline{S} = 0$$

mass conservation

$$\nabla \cdot \bar{\rho} \mathbf{v} = 0$$

momentum conservation (subtract out hydrostatic eq)

$$\bar{\rho} \frac{d\mathbf{v}}{dt} = -\nabla p' - \bar{\rho} \nabla \Phi' - \rho' \nabla \overline{\Phi} + 2\bar{\rho} \mathbf{v} \times \mathbf{\Omega} + +\bar{\rho} \bar{\nu} (\nabla^2 \mathbf{v} + 1/3 \nabla (\nabla \cdot \mathbf{v})) + \mathbf{J} \times \mathbf{B}$$

(assuming constant dynamic viscosity)

$$\nabla^2 \overline{\Phi} = 4\pi G \bar{\rho} - 2\Omega^2$$

$$\nabla^2 \Phi' = 4\pi G \rho'$$

heat equation

$$\bar{\rho}\overline{T}\frac{dS'}{dt} = \nabla \cdot (c_P \bar{\rho}\bar{\kappa}_{rad}\nabla(\overline{T} + T')) + \nabla \cdot (\overline{T}\bar{\rho}\bar{\kappa}_{turb}\nabla(\overline{S} + S')) - \bar{\rho}\overline{T}(\mathbf{v} \cdot \nabla)\overline{S} + (\text{heating})$$

equation of state

$$ho' = \overline{\left(rac{\partial
ho}{\partial S}
ight)}_p S' + \overline{\left(rac{\partial
ho}{\partial p}
ight)}_S p'$$

same magnetic equations

2D Boussinesq convection

 $\rho_{bot} / \rho_{top} = 1$

Martha Evonuk

2D Anelastic convection $\rho_{bot} / \rho_{top} = 148$

Martha Evonuk

Turbulent convection

with rotation and magnetic field

$$v = \kappa = \eta$$
 $\rho_{bot} / \rho_{top} = 12$

$$E_k = v / 2\Omega D^2 = 10^{-9}$$

Ra =
$$g\alpha\Delta TD^3 / v\kappa = 10^{12}$$

$$Q = B_0^2 D^2 / \mu \rho v \eta = 10^6$$

Tami Rogers

Stable radiative interior and unstable outer convection zone

Entropy perturbations in the equatorial plane

Tami Rogers

Opposite patterns of differential rotation in the equatorial plane maintained by convection in different profiles of density stratification

Differential rotation maintained by density-stratified turbulent convection

Entropy perturbations

Differential rotation maintained by density-stratified turbulent convection

Entropy perturbations

Non-axisymmetric, z-component of vorticity in a meridian plane

