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Jupiter

Visible layers: p < 1 bar, ρ < 1.7 × 10−4 gms/cc, T ∼ 170K

Convection occurring everywhere below the visible surface, except
for possible rocky core.

Molecular H/He layer 0.8RJ < r < RJ , metallic hydrogen below
this (electrically conducting). Gradual transition.

Temperature near transition region 6,800K, pressure 2Mb,
Density ∼ 1 gm/cc. If ρtrans/ρsurf ∼ exp 9, Nρ = 9.
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Jupiter’s internal structure profile (Guillot et al. 2004)
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High pressure puts planet in
metallic hydrogen phase be-
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Electrical conducting, perme-
ated by magnetic field
Flow speeds below 15,000 km
only 10−3 m/s << 100 m/s
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Convection in rotating spherical shells
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Assume non-magnetic convec-
tion in low conductivity region
r0 > r > ri

Radius ratio
η = ri/ro

Heat flux entirely from interior,
gravity radially inward.
Rapid rotation → z-length scale
longer than transverse scale
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Dimensionless parameters

Ekman number E =
ν

Ωd2
,

Prandtl Number Pr =
ν

κ
,

Rayleigh number Ra =
GMd∆S

νκcp
,

Radius ratio η =
ri

ro
, Polytropic index, n,

Number of density scale heights Nρ = exp ρi/ρo

where d = ro − ri is the length scale, ν eddy viscosity and κT

eddy diffusivity, both assumed constant.
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Linear theory rotating compressible convection

Equatorial section Meridional section

Entropy fluctuation. E = 2 × 10−5, η = 0.5, Pr = 1, n = 2.
Boussinesq, Nρ = 0, Racrit = 3.2280× 106, ωcrit = 534.36,
mcrit = 23.
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Linear theory rotating compressible convection

Equatorial section Meridional section

Entropy fluctuation. E = 2 × 10−5, η = 0.5, Pr = 1, n = 2.
Nρ = 2.0, Racrit = 3.3258× 107, ωcrit = 1844.42, mcrit = 55.
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Linear theory rotating compressible convection

Equatorial section Meridional section

Entropy fluctuation. E = 2 × 10−5, η = 0.5, Pr = 1, n = 2.
Nρ = 5.0, Racrit = 6.6570× 107, ωcrit = 5614.99, mcrit = 133.
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Higher Ra modes

Ra ∼ 2Rac Ra ∼ 3Rac

Entropy fluctuation. E = 2 × 10−4, η = 0.5, Pr = 1, n = 2.
Nρ = 5.0. Low E limit, short very thin cells. Asymptotic theory
possible.
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(i) Boussinesq models

∂u
∂t

+ u · ∇u + 2Ω× u = −∇(p/ρ) + gαT r̂ + ν∇2u

∂T

∂t
+ u · ∇T = κ∇2T , ∇ · u = 0

u is velocity, Ω is rotation vector, p is pressure, ρ is density, g is
gravity, α the coefficient of expansion, T the temperature and ν is
the kinematic viscosity.

Ra =
gα∆Td3

κν
, E =

ν

Ωd2
Pr =

ν

κ

E << 1, Racrit ∼ E−4/3, so Ra >> 1
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Boussinesq spherical convection model
uφ: E = 3 × 10−6, Pr = 0.1, η = 0.9, Ra ∼ 100Racrit

From Heimpel, Aurnou and Wicht, 2005
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Zonal Flow: Near Boussinesq Case
E = ν/Ωd2 = 4 × 10−6, Pr = ν/κ = 0.1,Radius ratio η = 0.85,

Number of scale heights Nρ = 0.1, polytropic index n = 2
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Meridional section Surface zonal flow
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Anelastic polytropic model

p0 = pcζ
n+1, ρ0 = ρcζ

n, T0 = Tcζ, ζ = c0 + c1d/r,

c0, c1 are constants defined in terms of η, n and Nρ

Anelastic continuity equation is ∇ · (ρ0u) = 0

S = cp(
1
γ

ln p − ln ρ)

Entropy equation is

ρ0
DS

Dt
=

1
T0

∇ · ρ0T0κT∇S +
1
T0

Qv
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Anelastic equations: Momentum

can be written

∂u
∂t

+ (u · ∇)u + 2Ω × u = −∇
(

pc

ρ0

)
− gαT0Sc

cp

+
ν

ρ0

∂

∂xj

(
ρ0

∂ui

∂xj
+ ρ0

∂uj

∂xi

)
− 2ν

3ρ0

∂

∂xi

(
ρ0

∂uj

∂xj

)

so the curl eliminates the pressure fluctuation. Only valid because
layer remains close to adiabatic

Assuming constant ν and constant κT
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Compressible Taylor-Proudman theorem

Vorticity equation

∂ω

∂t
+ ∇× [(2Ω + ω) × u] = ∇× gS′

cp
r̂ + ∇× Fvisc

Now
∇× [2Ω× u] = −2Ω · ∇u + 2Ω∇ · u

= −2Ω · ∇u − 2Ω
ρ

u · ∇ρ

Near surface, small length scales, viscosity, inertia and buoyancy
all significant, so u can vary with z. On length scales comparable
with d, planetary vorticity dominates, viscosity is negligible and
buoyancy only produces small z variation.
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Thermal Wind Equation

φ-component of vorticity equation

ρs
D

Dt

(
ωφ

ρ

)
− s(ω · ∇)

uφ

s
− 2Ω

∂uφ

∂z
= − g

rcp

∂S′

∂θ
+ φ̂ · ∇ × Fvisc

For a large-scale zonal flow uφ

−2Ω
∂uφ

∂z

dominates the left-hand sign (planetary vorticity stretched out by
the shear) and friction and thermal wind too small to balance it,
at least away from the surface regions.

Large scale jets uφ have to be z-independent in deep convection
zone. If no-slip boundaries imposed there, this is a problem.

Ekman suction opposes zonal flow generation mechanism.
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Scaling arguments

u2
∗

�2
∼ Ωu∗

d
∼ gαTS∗

c

�cp

Here � is typical scale of convection, u∗ is typical velocity, S∗
c

typical entropy fluctuation. Convective heat flux is of order

Fconv ∼ ρ0T0u∗S∗
c , giving

Ro =
u∗
Ωd

∼
(

gαFconv

ρ0cpΩ3d2

)2/5

, S∗
c ∼ (Fconv)3/5Ω1/5

(gα)2/5d1/5T0ρ
3/5
0

So u∗ and S∗
c both increase as ρ0 decreases towards top

Also
S∗

c

cp
=

Ω2d

gαT0
Ro3/2 << 1
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Meridional section snapshots

E = 2 × 10−4, Pr = 1, η = 0.7, n = 2, Nρ = 5, Ra ∼ 5Racrit

ur uφ
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Spherical surface snapshots

E = 2 × 10−4, Pr = 1, η = 0.7, n = 2, Nρ = 5, Ra ∼ 5Racrit

ur at r = ri + 0.5 ur at r = ri + 0.95
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Equatorial section of ur: E = 2 × 10−4, Pr = 1, η = 0.7, n = 2

Ra ∼ 6Racrit, Nρ = 0.1 Ra ∼ 6Racrit, Nρ = 5
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Zonal Flow: Compressible Case
E = 3 × 10−6, Pr = 0.1, η = 0.85, Nρ = 5.0, n = 2
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Meridional section Surface zonal flow

Averaged over φ
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Zonal Flow: Compressible Case
E = 3 × 10−6, Pr = 0.1, η = 0.85, Nρ = 5.0, n = 2

Meridional slice Meridional slice of uφ
snapshot of ur
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Zonal Flow: Compressible Case
E = 3 × 10−6, Pr = 0.1, η = 0.85, Nρ = 5.0, n = 2
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Longitude Longitude

Zonal flow at r = (ri + ro)/2 Surface zonal flow
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