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Outline of dynamo models

Boussinesq equations
for convection-driven
MHD flow

Rigid inner and outer
boundary
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Fixed temperature
contrast, no internal
heat sources




Two dynamo classes
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Dynamo regimes (at Pr=1)
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As the EKman number is lowered, dipolar dynamos occupy a
broader region and are found at lower magnetic Prandtl #



Dynamo regimes (at Pr=1)
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Minimum magnetic Prandtl number
for a dipolar dynamo

Pm, . =450 E¥4

Earth values:

E=10"—> Pm_ = 2x10°




Critical magnetic Reynolds number
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Self-sustained dynamos
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Rm=U_D/A

Critical Rm = 40 — 45, independent of Pm (at low enough E)



Conclusion

 |n rapidly rotating systems, dynamo onset at low
Pm occurs at the same magnetic Reynolds
number (Rm ;=40 -50) as it does at high Pm

* Lower Pm requires lower Ekman number for
onset at a low Rm

» Strong inertial forces, which arise in low-Pm
dynamos (where Re >> Rm) and which are
detrimental to dynamo action, must be balanced
by strong rotational constraints
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