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Small E, low Pm numerical dynamo

E = ν
Ωd2 = 3 × 10−6, Pr = ν/κ = 1, Pm = ν/η = 0.1 R ≈ 50Rcrit

Field is strongly dipolar: Rm ≈ 125, Elsasser number
Λ = B2/ρµΩη ≈ 0.5. Models typically produce dipole dominated
fields if inertia is not dominant. Local Rossby number U/�Ω =
(d/�)RmEPm−1 � 1

Columnar structure is evident in the dynamo simulations,
particularly near the tangent cylinder, and this seems to be
related to the dipole dominance. These dynamos won’t reverse.

For this run, Kinetic and Magnetic energies similar:

K.E. ≈ M.E., and also ohmic dissipation similar to viscous
dissipation.
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Field at the Core Mantle Boundary. Dipole dominant! Note the
weaker field near the pole, inside the tangent cylinder.
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(a) (b)
(a) Contours of ur at r = ri + 0.5d (b) Contours of ur at
r = ri + 0.8d

Snapshot. Flow is strongly time-dependent, individual rolls
having lifetime over only of order a turnover time.
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Magnetic field has remarkably little effect on structure of flow

(a) (b)
(a) Non-magnetic temperature snapshot in equatorial plane.

P = 7.0, E = 6.5 × 10−6, Ra = 42.7Rc

(Gillet and Jones, 2006)

(b) Temperature snapshot from the dynamo simulation
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(a) (b)
(a) Non-magnetic vorticity snapshot.

(b) ur in equatorial plane from dynamo simulation
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Parameter regimes: simulations and geodynamo

Simulations generally have 100 < Rm < 500, Rm ∼ 500 plausible
geodynamo value. With η ∼ 2 m2s−1, typical velocity
U∗ ∼ 5 × 10−4 ms−1, consistent with secular variation.

Typical simulation has

Pr =
ν

κ
∼ 1, Pm =

ν

η
∼ 1, E =

ν

Ωd2
∼ 10−5

Then

Ω = E−1Pm
η

d2
∼ 5 × 10−8s−1, should be 7 × 10−5s−1

Need scaling laws to extrapolate to realistic parameter regime.
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Typical Velocity: Inertial theory

u · ∇u + 2Ω× u = −∇p/ρ + j×B/ρ + gαT ′r̂ + [ν∇2u]

u · ∇ω − 2(Ω · ∇)u = ∇× gαT ′r̂ +
1
ρ
∇× (j×B), vorticity eqn

We assume a balance
U2
∗

�2
∼ ΩU∗

d
∼ gαT ′

�

Here U∗ is typical convective velocity. |ω| ∼ U∗/�

d = rcmb − ricb, � is length scale perpendicular to z, the roll axis.

Lorentz force ignored (?).
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� ∼
(

U∗d
Ω

)1/2

∼
(

5 × 10−4 × 2 × 106

7 × 10−5

)1/2

∼ 4km

� is Rhines length, balance of inertia and Coriolis. On longer
length scales, inertia << Coriolis. Can such short length scales be
relevant to the geodynamo?

Convective heat flux per square metre Fconv ∼ ρcpU∗T ′

Eliminate T ′ to get

U∗
Ωd

= Ro ∼
(

gαFconv

ρcpΩ3d2

)2/5

= (RaQ)2/5

For compositional convection, RaQ = gFm/ρΩ3d2, Fm being light
material mass flux, Kg m−2 s−1.
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Fitting data from dynamo simulations, Christensen & Aubert
2006 obtained

Ro = 0.85Ra0.41
Q

very close to inertial scaling.

Taking typical core velocity as 15 km/year from the secular
variation gives Ro = U∗/Ωd = 2.9 × 10−6, giving

RaQ ∼ 2 × 10−14 → Fconv ∼ 3.9 × 10−3Wm−2 → Qconv ∼ 0.6TW

with usual estimates for cp etc. Lowish, but right ball park! Heat
and composition fluxes vary across the core.
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Some length scales in the core

Linear onset length Lcrit = d
(

E(1+Pr)
Pr

)1/3

,

Core value ∼ 0.8 km

Rhines length, inertia ∼ Coriolis, LR =
(

U∗d
Ω

)1/2
,

∼ 4 km in core

Minimum length for dynamo action, Ldyn = 10η/U∗,

∼ 40 km in core

Magnetic length LB =
[∫

B2 dv/
∫ |∇ ×B|2 dv

]1/2

,

∼ 70 km in core

All fairly similar in numerical simulations!
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Magnetic field controlling roll size?

In simulations, little sign of magnetic field influencing roll-width �

But what if it does at lower EPm−1? A simple model is to take �

constant, rather than decreasing as Ra
1/5
Q as predicted by inertial

theory.

Then
ΩU∗

d
∼ gαT ′

�
, Fconv ∼ ρcpU∗T ′

giving

Ro ∼ Ra
1/2
Q rather than the Ro ∼ Ra

2/5
Q law of inertial theory

and the simulations.

Not hugely different, but will affect the heat flux arguments,
because of the large extrapolation range.

12



Reversals and inertia in dynamo models

At fixed E, if Pr and Pm increased, dynamo enters ‘inertia-free’
regime (Sreenivasan & Jones, 2006). Very dipole dominant,
non-reversing regime.

In inertial regime, field strength lower and morphology more
complex, reversals occur.

Olson & Christensen (2006) note known reversing dynamos lie on
boundary between the two regimes. Also suggest boundary at
d Ro/� ∼ 0.1.

Requires very short length scales, ∼ 0.1km, to be important in the
dynamo process. Locally low Rm motion is strongly constrained
by rotation and magnetic field (Braginsky and Meytlis, 1990).
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(a) (b)
(a) Mean magnetic field for (i) Pr = Pm = 5 (Black)

(ii) Pr = Pm = 1 (Blue) (iii) Pr = Pm = 0.5 (Red)

(iv) Pr = Pm = 0.2 (Green) E = 10−4

(b) Magnetic Reynolds number

Note the sharp distinction between the non-inertial

solutions, independent of Pr and the green inertial solution.
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Scaling for magnetic field

Energy input from buoyancy per unit volume balances ohmic and
viscous dissipation. If fohm is fraction of total dissipation that is
ohmic

fohm
gαF

cp
∼ η|∇ × B|2

µ

To get magnetic energy, need a relation between the field and the
current i.e. the magnetic length scale.

LB =
[∫

B2 dv/
∫ |∇ ×B|2 dv

]1/2

. Note L2
B/η is time for

magnetic energy to dissipate due to ohmic heating.

Assume dissipation mainly ohmic, not viscous, fohm ≈ 1.
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Christensen and Tilgner 2004 suggest LB ∼ dR
−1/2
m , from

simulations and lab experiments. Kinematic flux expulsion models
also give this scaling.

Assuming this relation for LB is correct,

B ∼ µ1/2d1/2

(
gαF

cp

)1/2 1

U
1/2
∗

Now we can eliminate U∗ using our favourite scaling,
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With the Ro ∼ RaQ
1/2 velocity scaling,

B ∼ µ1/2d1/2Ω1/4ρ1/4

(
gαF

cp

)1/4

and with the Ro ∼ RaQ
2/5 velocity scaling

B ∼ 0.45µ1/2d2/5Ω1/10ρ1/5

(
gαF

cp

)3/10

Both predict remarkably weak dependence of the field on rotation
rate.

Of course, these formulae can only be valid in the rapidly rotating
limit.
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Alignments

—

Why not balance buoyancy and Lorentz directly?

gαT ′U∗ ∼ u · j ×B ∼ U∗B2R
1/2
m

µρ

In terms of heat flux

B2 ∼ µ
gαF

cp

R
−1/2
m

U∗

Factor R
−1/2
m too small.

u · j× B << |u||j||B|

Alignment of field and flow!
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