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Observations:

Granular boundaries at the quiet solar surface are associated with a
network of mixed polarity magnetic flux - show up in G-Band images
as localised bright points (Image taken from Hinode’s website)
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Cattaneo (1999).

Dynamo action in
Boussinesq convection:
(Rm=1000, Re=200)

Right: Kinetic energy + 5x
magnetic energy vs time
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Vogler & Schussler (2007):

LES simulation of dynamo action
In radiative compressible
convection

Right: Results from 3 runs

(A: Rm=300; B: Rm=1300;
C:Rm=2600), showing magnetic
energy as a function of time.

Below: A surface snapshot from
run C (taken from Schussler &

Magnetic energy

Vogler 2008).
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Model setup: Non-dimensional equations
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A horizontally-periodic Cartesian domain (A typically 4 or 8)

Upper and lower boundaries: Impermeable, stress-free, vertical field, fixed T




Model setup (cont.)

Numerical method (Direct numerical simulation)

» Mixed finite-difference/pseudo-spectral scheme
* Horizontal derivatives evaluated in Fourier space

» Fourth order finite differences (either upwinded or centred, as
appropriate) are used to calculate vertical derivatives

 Typical computational meshes use 256/512 points in each horizontal
direction and > 100 points vertically

» Code parallelised using MPI

Key Parameters: (Photospheric estimates given in brackets)
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Convective dynamo action

Right: The Rm dependence of 02|
the kinematic growth rate of the N P
convectively-driven dynamo
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« Critical magnetic Reynolds number is
approximately 300

» Growth rate appears to be
converging at large Rm, but this may
be an indication that numerical o4

diffusion is becoming increasingly

important in this parameter regime 0 200 100 600 500
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Magnetic Prandtl number: There is some debate regarding the viability of small-
scale dynamos at low magnetic Prandtl number (e.g. Boldyrev & Cattaneo 2004,
Schekochihin et al. 2005) -- impossible to resolve this debate using DNS at
present (with current computational facilities)

For this set of parameters: Pm ~ 2 when Rm = Rm¢ ~ 300



Convective dynamo action

Right: The initial state — a fully developed
non-magnetic convective state

Not really “turbulent” (Reynolds number is
too small), but highly time-dependent.

Magnetic Energy vs Time: Rm=60
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By varying the (constant) magnetic L P
diffusivity, different magnetic Reynolds i V\n i
numbers can be investigated / Y )
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Right: Rm=60 — too small for dynamo
action - magnetic energy decays
exponentially
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Convective dynamo action (cont.)

A kinematic dynamo:

A=4 Rm~ 660 Re~ 150

Numerical resolution: 256 x 256 x 160

Magnetic Energy vs Time: Rm=660
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Convective dynamo action (cont.)

A kinematic dynamo:

A=4 Rm~ 660 Re~ 150

Numerical resolution: 256 x 256 x 160

Magnetic Energy vs Time: Rm=660
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Convective dynamo action (cont.)

A nonlinear dynamo: T

A=4 Rm~ 520 Re~ 150

Numerical resolution: 512 x 512 x 160

Magnetic Energy vs Time: Rm=520
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Convective dynamo action (cont.)

Evacuation of magnetic elements:

As magnetic concentrations form, the resulting high magnetic pressure
tends to lead to the partial evacuation of these regions

Below left: A plot of the minimum density against time for this
nonlinear case.

Implications for numerics:

Minimum Density vs Time
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Summary (and suggestions)

 All simulations are in the high Pm regime. Using DNS, not possible to
resolve necessary scales with available computing resources - using
LES, what is Pm?

* This issue will not be resolved by numerical approaches in the
near future - could a simpler model be considered?

» Convective dynamos do work in the high Pm regime, although the
partial evacuation of the resulting magnetic regions leads to numerical
difficulties....

» Anelastic approach may be a good compromise (although this will
underestimate the peak fields that can be produced)

 Dynamo problem may be well suited to AMR-type approaches -
not investigated yet, but would allow us to focus the necessary
resolution upon the magnetic structures.....



