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 Quick review of results from Madison (with references)
 Observation of fluctuation driven currents

 Near term plans on the Madison Dynamo Experiment
 adjustable vanes for helicty and turbulence control
 subcritical transitions with externally applied fields

 Future plans
 turbulence reduction and flow control
 A Plasma based MRI and Dynamo Experiment

Outline



Dynamo is of the stretch-twist-fold type:  field 
line stretching, geometric reinforcement, and 
reconnection leads to dynamo



✦ Direct Numerical 
Simulations of 
MHD equations 
with mechanical 
forcing

✦ Re=2200; 
turbulence for 
Re>450

For liquid metals, Re>>Rm



Turbulence, in the two-vortex dynamo, increases 
Rmcrit by factor of 5
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initially turbulent, relaminarized dynamo

laminar dynamo
no dynamo

stability curvedynamo

no dynamo

 Recent, fully resolved MHD simulations (no hyperviscosity, no LES) 
extended to Re~5000

 proper boundary conditions and mechanical forcing term

Bayliss, Nornberg, Terry and Forest, Numerical simulations of current generation and dynamo 
excitation in a mechanically-forced, turbulent flow, Phys. Rev. E, (2006)



The Madison Dynamo 
Experiment



Previous Results from the Madison Dynamo Experiment

components of Ylm

Impossible to reconstruct 
with axisymmetric flows!

Bpol

Spence, Nornberg, Jacobson, Kendrick, and Forest,  Observation of a turbulence-
induced large-scale magnetic field, Phys. Rev. Lett.  96 055002 (2006).
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Spence, Nornberg, Jacobson, Parada, Kendrick, and Forest, Turbulent 
Diamagnetism in Flowing Liquid Sodium, Phys. Rev. Lett.  98 164503 (2007).

Previous Results from the Madison Dynamo Experiment



Predicted Observed

Nornberg, Spence, Jacobson, Kendrick, and Forest, Intermittent magnetic field 
excitation by a turbulent flow of liquid sodium, Phys. Rev. Lett. 97 044503 (2006).

Previous Results from the Madison Dynamo Experiment



Future Plans for Madison Dynamo Experiment
 Adding internal baffles for flow control and 

turbulence reduction



CFD (FLUENT) has been used to study baffles and 
further optimize flow



CFD predicts lower fluctuation levels and better 
optimized pitch of propellors
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Current Setup- No Baffles
Equatorial Baffle
Poloidal Baffles + Equatorial Baffle

case turbulent energy
no baffles 0.71 m2/s2

equatorial baffle 0.42 m2/s2

poloidal vane 0.10 m2/s2
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Figure 2. Magnetic field amplitude B as a function of the magnetic Reynolds number Rm
for the runs in series A. The red (solid) dots denote the quenched states, starting from A8∗.
For comparison, the green (open) squares show runs below and above the dynamo threshold

at Rmc ≈ 230. A hysteresis cycle in counterclockwise direction results. Furthermore, the
critical magnetic Reynolds number Rmc(V ) ≈ 115 of the mean flow from run A5∗ is shown
by the vertical blue dashed line.

Run Rm Emag Ekin Emag/Ekin B

B0 51 0.00 0.71 0.00 0.00

B1 74 0.00 0.71 0.00 0.00

B2 77 0.00 0.71 0.00 0.00

B3 79 0.07 0.57 0.13 0.38

B4 82 0.00 0.69 0.00 0.00

B5 83 0.10 0.47 0.22 0.45

B6 84 0.00 0.67 0.00 0.00

B7 87 0.14 0.38 0.37 0.53

B8 90 0.20 0.30 0.66 0.63

B9 102 0.23 0.21 1.07 0.68

B9∗ 102 0.00 0.73 0.00 0.00

B10∗ 128 0.25 0.21 1.20 0.71

Table 2. Overview of the runs performed at Re = 512 (“series B”). Unquenched runs are
marked with an asterisk. Run B10∗ constitutes the initial condition for the quenched runs.

3.3. Runs at Re = 227 (series C)

A third series of runs (labeled “C”) was performed at Re = 227. Table 3 gives an overview.

The dynamo threshold at Re = 227 is Rmc ≈ 56. The critical magnetic Reynolds number of

the mean flow (obtained by time-averaging the velocity field of run C1∗) is Rmc(V ) ≈ 76.

Hysteresis Observed
in Simulations

Hysteresis cycle in a turbulent, spherically bounded MHD dynamo model 6
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Figure 1. Time traces of kinetic and magnetic energy from a selection of runs at Re = 936.
(a) A run is started at t = 0 with Rm = 260 (A8∗). During the kinematic phase, the
magnetic energy grows exponentially. Starting from t = 775, the magnetic field is strong
enough to react back on the velocity field. In the following, nonlinear saturation occurs. At

t = 892, the dynamo is quenched to Rm = 104, its positive feedback mechanism breaks

down, and the magnetic field energy decays exponentially. (b) Starting from the saturated

run A8∗, the magnetic Reynolds number is reduced to Rm = 107 (A1). The dynamo action
persists, the system reaches a new quasi-stationary state. (c,d,e) The dynamo is quenched

to Rm = 108 (109, 156), Rm < Rmc. (f) For direct comparison with case (e), the seed

magnetic field decays in a run which is performed atRm = 156, starting at t = 0.

Reuter, Jenko, and Forest, Hysteresis cycle in a turbulent, spherically bounded MHD dynamo 
model, submitted to New Journal of Physics (2008)



Externally applied field can access 
dynamo at lower Rm
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Figure 4. Magnetic field amplitudes during the stationary states of the runs in series AB (red

solid dots). For comparison, the magnetic field amplitudes from series A are shown (green

open squares). The amplitude of the externally applied field is indicated by the blue dotted

line.

4.1. Subcritical dynamo bifurcation

In the quenched state, the dynamo maintains field amplification against ohmic dissipation in

a window Rm0 < Rm < Rmc, e.g., with Rm0 ≈ 0.47Rmc in series A. This happens due

to a finite amplitude perturbation, which is given by the saturated magnetic state of the self-

excited, turbulent dynamo at Rm > Rmc, or respectively, by the externally applied field. As

a result, the system obeys a hysteresis cycle. Therefore, the behaviour observed in the runs

A1-A7 is evidence of global subcriticality [12] (cf. also the references therein). This effect

was recently discovered in the turbulent, unbounded TG dynamo [12]. Our studies show that

global subcriticality is also present in a less idealized, turbulent dynamo model within a finite,

spherical domain. A comparison of both systems will be drawn below in section 4.5.

Figure 5 provides an overview of the part of the Re − Rm parameter space which we

have explored in the present study by performing the runs in series A, B, and C. The stability

curve Rmc rises roughly linearly in the covered regime. Here, at eachRe, the threshold Rmc

is given by the dynamo case discovered at the smallestRm. The lower limit of the subcritical

dynamo window Rm0 rises linearly as well, but with a smaller slope. As a result, the width

of the window increases with Re. In addition, we have included the dynamo threshold of

the mean flow Rmc(V ). The underlying V was computed by time averaging during the non-

dynamo runs. This threshold shows an initial rise with Re as well, however, it saturates to
a plateau above point B. The physical mechanisms which govern these stability curves are

the focus of ongoing studies. In the present context, the question if the lower threshold Rm0

saturates with the proposed saturation of Rmc will be in particular interesting to address.

Unlike in the TG case, the curve Rm0 is not tied to Rmc(V ) in our model (cf. section 4.5 for

a discussion).



Big Questions in Astophysics have a Common Theme 
Related to Magnetic Field Generation from Plasma Flow

SOLAR MAGNETIC FIELD

GALACTIC MAGNETIC FIELD

-Collisionless close to hole

-Galaxy is ejecting plasma

and magnetic field into 

the surrounding IGM

-Rm = 1019

-Pm = 105

ACCRETION DISKS 

-M51 Spiral Galaxy

-Polarization of 6cm emis-

sion Indicates direction of 

B field in the hot plasma 

between the stars.

-Rm = 1014 (?)

-Pm = 105

Large scale coherent field

-Dynamic and well 

measured

-weak large scale

strong smale scale

Rm = 107

Pm = 10-3  

GALAXY CLUSTERS
Xray image of Abel 

2597 from Chandra

-Collisionless plasma

(Te=10 keV); mean 

Free path size of a 

galaxy.

-Turbulent.

-Magnetized: ~3

-Rm = 1029

-Pm = 104



Poorly Understood, Fundamental Plasma and MHD 
Processes Can Benefit from Experimental Studies

 Large Scale Dynamo:  What is the size, structure and dynamics of the mean magnetic field 
created by high magnetic Reynolds number flows—particularly rotating flows? At low Pm, 
does turbulence suppress the Large Scale Dynamo?  Is helical turbulence necessary for a 
turbulent LSD?

 Small Scale Dynamo:  How do random turbulent (high Rm) flows create random and 
turbulent magnetic fields—what is the structure of these fields? 

 Plasma Turbulence:  What is the nature of plasma turbulence when magnetic fields and 
velocity fields are in near equipartition?  How is energy dissipated?  How are heat, 
momentum and current transported in stochastic magnetic fields that have little large scale 
structure?

 Magnetorotational Instability:  How does angular momentum get transported by magnetic 
instabilities? Can the MRI be a dynamo?

 Explosive Reconnection Driven by Plasma Flow:  How does plasma flow generate 
magnetic energy which can accumulate and ultimately be released in explosive instabilities? 

 Plasma Instabilities:  Do plasma instabilities beyond MHD such as the firehose, mirror, or 
energetic particle driven exist in collisionless, turbulent plasma flows? How do these 
instabilities saturate?  Do they change the macroscopic dynamics? 



 Important Dimensionless Numbers

Cowling C
B2

2µ0
1
2ρU2 4.75 B2

G
µn18U2

km/s

Magnetic Reynolds Rm µ0σUL 1.5
T

3/2
e,eVUkm/sLm

Z

Reynolds Re UL
ν 8amUkm/sµ2n18

T
5/2
i,eV

Magnetic Prandtl Pm µ0σν 0.18
T

3/2
e,eVT

5/2
i,eV

µ2n18

Magnetization ρe
L 0.024

T
1/2
e,eV

BGLm

Ion Collisionality λmfp

L 0.012
T 2
i,eV

n18Lm

β 2µ0nT
B2 40n18Te,eV

B2
G

Table 1: Formulary of important dimensionless quanti-
ties.

Recently, several experiments in-
vestigating self-generation of magnetic
fields have been carried out using flows
of liquid metals (either sodium or
gallium) as a conducting medium to
achieve the high Rm values needed to
investigate magnetic field generation.
Liquid metals are conducting, satisfy
the MHD equations, and require no
magnetic field to provide initial confine-
ment and hence can easily satisfy the
C ! 1 criteria. For very idealized,
laminar velocity fields the critical value
of Rm for self-generation of magnetic
fields is predicted by theory to be around 100. The conductivity of sodium (which melts at 100 C)
is a decreasing function of temperature (like all metals) and numerically equal to 107 mho-m, so
that Rm ≈ 12LmUm/s [experiments investigating self-excitation require L ∼ 1 m, and V ∼ 10 m/s
so to achieve marginally large enough Rms to be in an interesting MHD regime]. To achieve these
parameters using liquid sodium in an experiment of radius L=0.5 m requires a mechanical input
power of Pmech ∼ 100 kW. Unfortunately, turbulent flows have the somewhat unfavorable scaling
of Rm ∝ (PmechL)

1
3 . To increase Rm by an order of magnitude (from Rm=10 to Rm=1000)

in a sodium experiment of similar size would require 100 MWs!! This is a serious limitation for
addressing the broader range of plasma processes listed above.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo
laminar ! 100 < 100 ! 1 - -
with turbulence ! 500 > 1000 ! 1 - -

small scale dynamo ! 500 ! 1000 ! 1 ? ?
MHD turbulence ! Re ! 1000 ∼ 1 - -
MRI
with mean field ! 10 — " 1 ? ?
without mean field ! 15000 — ! 1 ? ?

B field stretching ! 100 < 100 ∼ 1 - -
Plasma Instabilities ! Re ! 1000 " 1 ! 1 % 1

Table 2: Dimensionless parameter criteria required for each of the
plasma processes addressed in the text.

In particular, it would
be interesting to investigate
dynamo activity with Rm

values that would be sev-
eral orders of magnitude
larger than those achiev-
able in present and planned
liquid sodium experiments:
plasmas are obvious candi-
dates for such experiments.
In plasmas, unlike liquid
metals, the conductivity in-
creases with temperature
and since plasmas are much
less dense they can be made
to flow at high speeds for a given amount of power. For plasmas the conductivity increases as T 3/2;
To match the conductivity of sodium, a singly ionized plasma requires an electron temperature of
630 eV, plasma temperatures that are only found in fusion experiments using strong, externally
applied magnetic fields to thermally insulate the hot plasma from cold walls. However, plasma
flows can be efficiently driven to much higher speeds since the density is much lower. Thus for a

3



Minimum requirements for experimentally 
addressing each Plasma Process

Large, High Te, fast flowing 
plasmas Low B, fast flowing 

plasmas

smaller), while in other cases, like the Sun, much of the magnetic field energy can be considered as
turbulent.

Magnetic Reynolds Number Rm µ0σUL 1.5
T

3/2
e,eVUkm/sLm

Z

Reynolds Number Re UL
ν 8 amUkm/sµ2n18

T
5/2
i,eV

Magnetic Prandtl Number Pm µ0σν 0.18
T

3/2
e,eVT

5/2
i,eV

µ2n18

Cowling Number C
B2

2µ0
1
2ρU2 4.75 B2

G
µn18U2

km/s

Lundquist Number Lu Rm× C1/2 3.26
T

3/2
e,eVBGLm

Z
√

µn18

Magnetization ρe
L 0.0238

T
1/2
e,eV

BGLm

Ion Collisionality λmfp

L 0.012
T 2
i,eV

n18Lm

Plasma Pressure β 2µ0nT
B2 40 n18Te,eV

B2
G

Table 1: Formulary.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo
laminar ! 100 < 100 " 1 - -
with turbulence ! 500 > 1000 " 1 - -

small scale dynamo ! 500 ! 1000 " 1 ? ?
MHD turbulence ! Re ! 1000 ∼ 1 - -
MRI
with mean field ! 10 — " 1 ? ?
without mean field ! 15000 — " 1 ? ?

B field stretching ! 100 < 100 ∼ 1 - -
Plasma Instabilities ! Re ! 1000 " 1 ! 1 $ 1

Table 2: Dimensionless parameters required for addressing each
plasma process.

The process by which this
happens varies from one sit-
uation to another, but one
common essential feature
which is necessary for dy-
namos is that the magnetic

Reynolds number, Rm, be
large: Rm ≡ µ0σLU is a di-
mensionless parameter con-
structed from the conductiv-
ity σ, the size of the object
L, and the characteristic ve-
locity U and quantifies the
ratio of generation of mag-
netic field by sheared flows
and the dissipation by electrical resistivity. Table 2 gives an estimate of the minimum value of
Rm needed for studying the processes listed above. It is very important to recognize that these
processes can be investigated without matching their corresponding astrophysical values.

Recently, several experiments investigating self-generation of magnetic fields have been carried
out using flows of liquid metals (either sodium or gallium) as a conducting medium to achieve the
high Rm values needed to investigate magnetic field generation. Liquid metals are conducting,
satisfy the MHD equations, and require no magnetic field to provide initial confinement and hence
C " 1. For very idealized, laminar velocity fields the critical value of Rm for self-generation of
magnetic fields is predicted by theory to be around 100. The conductivity of sodium (which melts
at 100 C) is a decreasing function of temperature (like all metals) and numerically equal to 107

mho-m, so that Rm ≈ 12amUm/s: experiments which investigate self-excitation require a ∼ 1 m,
and V ∼ 10 m/s so to achieve marginally large enough Rms to be in an interesting MHD regime.
To achieve these parameters using liquid sodium in an experiment of radius L=0.5 m requires a

3

630 eV, plasma temperatures that are only found in fusion experiments using strong, externally
applied magnetic fields to thermally insulate the hot plasma from cold walls. Plasmas flows, how-
ever, can be efficiently driven to much higher speeds. Thus for a plasma experiment of similar size
(a = 1 m) to achieve similar parameters to the sodium experiment (Rm = 100) would simultane-
ously require an electron temperature of only Te = 10 eV and a velocity U = 2.2 km/s, modest
parameters which should be readily achievable using low temperature plasmas as outlined below.

For completeness, we note the importance of the resistive equilibration time for the experiment
which is also closely related to the conductivity and size of the plasma. For spherical systems, this
is often defined to be to be τσ = µ0σa2

τσ = 0.8
T 3/2

e,eV

Z
a2

m msec, (2)

where a is the radius of the spherical plasma. This time sets the time scale for typical growth and
decay of magnetic fields. The lifetime of and astrophysical object, the amount of time simulated
numerically, and the pulse-length of any experiment investigating dynamo phenomena all need to
be long compared to this characteristic timescale.

plasma radius 1.5 m
ρe 0.75 m
ρi 65 m
ρe,cusp 10−6 m
ρi,cusp 10−3 m
λi,mfp 10−4 — 0.05 m
λe,mfp 0.1—10 m

Table 2: Characteristic length scales for the
plasma parameters corresponding to Te = 10
eV, Ti = 1 eV, ne = 1017—1019 m−3, central
magnetic field of B = 0.2× 10−4 Tesla, and a
cusp field of B = 1 Tesla.

Power Requirements.
It is instructive to examine the power require-

ments for achieving the high Rm values required
for self-generation in an experiment. For turbulent
liquid metal flows, the power required to drive the
flows can be estimated by assuming that the input
power balances the loss of energy from the mean
flow

P =
∫

V ol

1
2ρU2d3x

τloss
. (3)

For a turbulent flow, the energy lost from an eddy
of scale length % and characteristic velocity Ueddy is
τloss ∼ %/Ueddy. This energy cascades to the vis-
cous dissipation scale where it ultimately shows up
as heating. Assuming that the scale length of the main vortex is the sphere radius, there is a
characteristic velocity associated with the large scale flow

Uturb =
(

6
4π

P

ρa2

) 1
3

, (4)

which is linearly related to the peak velocity used in the definition of Rm. For a liquid sodium
experiment of radius a=0.5 m with input power of 100 kW, Uturb = 5.8 m/s comparable to peak
speeds measured to be of the order 15 m/s. Note that turbulent flows have the somewhat un-
favorable scaling of Rm ∼ (Pa)

1
3 . To increase Rm by an order of magnitude (from Rm=10 to

Rm=1000) in a sodium experiment of similar size would require 100 MWs !!
Turbulence and the Magnetic Prandtl Number. While Rm is the essential parameter generating
magnetic field generation, the most important parameter governing the flow properties (beyond
the geometry and some device for injecting momentum) is the fluid Reynolds number Re ≡ aU

ν ,
where ν is the kinematic viscosity. Large Reynolds numbers (Re > 1000) is usually associated
with strong turbulence in the velocity field, while low values of Re imply laminar flows with strong
viscous dissipation. The ratio of the magnetic Reynolds number to the fluid Reynolds number is a

3



Liquid Metal Experiments are limited:  the next frontier for 
experimental dynamo studies should be plasma based

 Liquid metals have advantage that confinement is free 
and conductivity is independent of confinement, BUT:
➡ Unfortunate Power Scaling Limitation:  Pmech ~ Rm3 / L
➡ Prandtl Number is always very small:    Rm  << Re

 Plasmas have the potential for 
• Variable Pm
• Rm >> 100
• intrinsically include “plasma effects” important for 

astrophysics (compressibility, collisionality)
• broader class of available diagnostics



 Dynamo and MRI Process

1. Begin with small magnetic field (C<<1)
2. Stir until Rm > Rmcrit

3.Magnetic field spontaneously created

Challenge:  to create a large, highly conducting, 
unmagnetized, fast flowing laboratory plasma for 
study  

-difficult to stir a plasma
-need some confinement for plasma to be hot



Plasma Dynamo Facility is needed to study high 
Rm, high C plasmas

LaB   Cathode6

- +

axisymmetric rings of 
permenent magnets

 N     S     N    S    N    S     N    S    N    S     N
   S    N

    S     N
    S    N

    S    N    S     N    S    N    S     N    S

1.5 m

>200 kW

Figure 1: The flux contours for the proposed
dynamo experiment using the ring cusp geom-
etry. The magnetic field is generated by ax-
isymmetric rows of 1.2 Tesla dipole magnets
with alternating polarity. The plasma is gen-
erated by injection of 1 kA of 75 volt primary
electrons, which subsequently ionize and heat
a background plasma.

In what follows, we propose to confine the
plasma using a very localized magnetic field that
is important only at the boundary of the plasma.
The confining magnetic field is localized at the pe-
riphery of the experiment and a large, unmagnetize
plasma can be created in the core of the experiment.
In addition, the magnetic geometry also allows for
control of the velocity at the the boundary of the
plasma.

The geometry we are proposing is a variant on
the multidipole confinement geometry first investi-
gated by MacKenzie, Leung, Herskowtitz and oth-
ers [24, 21, 20, 9]. The ion sources used in neu-
tral beam heating systems are an example of such
devices[15]. The plasma parameters are very suit-
able for the proposed experiment, but the proposed
device will need to be larger than previous exper-
iments and it must be made to flow to achieve
the needed values of Rm. These devices use rows
of alternating polarity permanent magnets on the
boundary of the plasma. In cylindrical geometry,
these often run lengthwise. The purpose of the
magnets is to reduce the loss area from the sur-
face area of the vessel to an area which is of the
order of the ion-gyroradius × the overall length of the magnets[? ]. Several techniques have been
used to generate plasmas in these devices including hot cathodes and rf heating. The most robust
is to insert a negatively biased, electron emitting filament (such as a resistively heated tungsten
or lanthanum hexaboride filaments) into a low pressure gas. Primary electrons are thermionically
emitted from the filaments and are well confined by the cusp field, and have sufficient energy to
ionize the background gas. These sources are inherently steady-state (requiring only DC power
supplies and vessel cooling). Such a geometry is exemplified in the Berkeley ion source (used on
TFTR neutral beams) that produces a hydrogen plasma with a density of n=5 × 1018 m−3 and an
electron temperature Te= 6 eV in a small volume (10s of liters) lined with 0.4 Tesla magnets and
approximately 40 kw of injected power.

We propose to construct a large, high field, high power variant on the plasma sources described
above in an axisymmetric, ring-cusp geometry as shown in in Fig. 1. For dynamo studies it is
desirable to simultaneously increase the plasma size and electron temperature in order to maximize
Rm. The proposed experiment is a 3 m diameter sphere is 3 m with 26 rings of 1.3 Tesla, NeFeB
(N48 grade) 1” cube magnets in an axisymmetric geometry. New technology has made these
strong magnets available and this experiment would represent an unprecedented advance for cusp
confinement with more than a factor of two increase in field strength. Electron temperature has
been shown to scale with the magnetic field strength[16] and these magnets will be almost twice
as strong as in previous experiments, consistent with the lower loss rates due the narrowing of the
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 Axisymmetric Ring Cusp
 edge confinement 

provided by 1.5 T, NdFeB 
Magnets

 high power plasma 
source using LaB6

 200 kW, DC power 
supplies

 similar to LAPD, CDX 
technology

 Challenges

 cooling of magnets
 insulators



Large, Magnetic Field Free Volume Plasma 

|B| |B| (on equator)

0.0 0.5 1.0 1.5
R (m)

10-5

10-4

10-3

10-2

10-1

T
e

s
la

Figure 2: (a) 0.1, 0.01, and 0.001 contours of magnetic field strength. (b) The magnetic field
strength at cusp and btween cusps (including the earth’s field).

cusps.
Fig. 2 shows the strength of the magnetic field can be made negligibly small over a region

larger than a 1 m radius spherical region using 26 rings. The overall length of these magnets is
approximately 150 m and is estimated to cost $150k. The magnets must be water cooled and also
covered with a boron nitride insulator on the front, plasma facing surface to allow for the electrode
flow drive desribed below.

The toroidally symmetric arrangement should have a significant impact on confinement. The
∇B drifts are purely toroidal which allows the current to remain divergence free and hence eliminate
convectives cells associated with non-symmetric electric fields. The magnetic field in the core drops
to negligible values within a distance on the order of the spacing between magnets. The primary
tradeoff in going to going to large numbers of rings are cost and port access. 25 rings gives a space
of 15 cm between rings, adequate for probe ports and optical views.

To ionize and heat the plasma to high temperatures, large area Lanthanum Hexaboride (LaB6)
cathodes will be used. LaB6 cathodes have previously been used in ion sources[15, 22, 30], and
also for helicity injection and bias experiments the CDX-U tokamak at Princeton and on the
CCT tokamak at UCLA for plasma production and as current sources [28, 10]. The technological
developments used on those devices will be applied directly to the sources for this device. These
sources produce significantly more power than can be extracted from tungsten filaments (we envision
several large cathodes operating with discharge currents of several kAmps at voltages of 100 volts).

The total power required to maintain the plasma density against particle losses can be esti-
mated by assuming that one electron-ion pair results from a primary electron with an energy of
approximately 10 × the ionization potential (there are many, non-ionizing inelastic processes in
general which account for this extra energy). For argon (Wion=15.7 eV), this equation gives the
power requirement for plasma production and sustainment. The most extreme plasma considered,
a hydrogen plasma at 1019 and 10 eV, this would require approximately 2.5 MW, while an argon
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plasma will require 0.5 MW.
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Figure 3: Electrode drive for flow. Alternat-
ing positive and negative electrostatic bias is
applied to electrodes between cusp rings. The
resulting !E× !B velocity is purely toroidal and
controllable.

Plasma Rotation Control. The multidipole geom-
etry allows a simple and robust electrode scheme
to drive the velocity field in this geometry. The
geometry is shown in Fig. 3. The concept is to
use toroidally symmetric electrodes between each
of the cusp rings, and to apply alternating pos-
itive and negative potentials to these electrodes.
The resulting electric field alternates in polarity,
which, together with the alternating direction of
the magnetic field gives a uniform !E × !B veloc-
ity in the toroidal direction. The electrode scheme
mimics the boundary conditions that a rotating ves-
sel would provide in fluid mechanics experiments
(where no slip conditions can be assumed).

Since the UE×B velocity can be estimated on
the surface of the magnets from the magnitude of
the potential drop, the distance between the flux
surfaces, and the strength of the magnetic field on
the surface of the magnets, it can be projected in to
field lines deeper in the sphere. We plan to insert
the cathodes into magnetic field lines which are separated by 1 cm on the surface of the magnetics.
A potential difference of 100 volts between positive and negative sides of the magnets gives a 10
km/s velocity which should exist in the magnetized region of the plasma. We assume that there will
be a viscous coupling of the magnetized region with the unmagnetized region. The peak velocity
UE×B = 20 km/s is assumed to come from a 200 volt difference between the electrodes.

The experimental flexibility of the rotation control proposed here is remarkable in that the
experimenter can precisely control the boundary condition Ω(r = a, θ) by adjusting the voltages
between each of the electrodes. So, for example, conditions like the free-slip surface of the sun can
be investigated for the first time; at the equator the surface of the sun completes a rotation once
every 25.4 days while near the poles it’s as much as 36 days. Rigid rotation should be easy to
accomplish by adjustment of the electrode voltages at each latitude to impose a uniform rotation
rate on the surface. Assuming that the magnets are uniformly separated poloidally and that they
have identical strengths, an electrode voltage ∆U(θ) ∼ sin θ will give uniform rotation.

One might ask whether more complex flow geometries are possible with such a simple flow drive
or if the axisymmetric geometry precludes more complicated flow. The flexibility of controlling the
rotation profile gives a knob, however, which can be used to drive poloidal flows. For example, ro-
tating regions near the poles in opposite directions, with relatively little rotation near the equatorial
region is exactly the type of geometry using in the Von Karman flows regularly investigated in fluid
mechanics experiments. In those experiments disks at each end of a cylindrical vessel are rotated
in opposite directions making each hemisphere rotate in opposite directions and strong centrifugal
pumping that gives poloidal flows with inflow at the equator and outflow along the poles. This is
exactly the topology used in the liquid sodium version of the Madison Dynamo Experiment and is
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Formulary of Key Dimensionless Parameterssmaller), while in other cases, like the Sun, much of the magnetic field energy can be considered as
turbulent.

Magnetic Reynolds Number Rm µ0σUL 1.5
T

3/2
e,eVUkm/sLm

Z

Reynolds Number Re UL
ν 8 amUkm/sµ2n18

T
5/2
i,eV

Magnetic Prandtl Number Pm µ0σν 0.18
T

3/2
e,eVT

5/2
i,eV

µ2n18

Cowling Number C
B2

2µ0
1
2ρU2 4.75 B2

G
µn18U2

km/s

Lundquist Number Lu Rm× C1/2 3.26
T

3/2
e,eVBGLm

Z
√

µn18

Magnetization ρe
L 0.0238

T
1/2
e,eV

BGLm

Ion Collisionality λmfp

L 0.012
T 2
i,eV

n18Lm

Plasma Pressure β 2µ0nT
B2 40 n18Te,eV

B2
G

Table 1: Formulary.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo ! 100 < 100 " 1 - -
large scale dynamo ! 500 > 1000 " 1 - -
with turbulence
MHD turbulence ! Re ! 1000 ∼ 1 - -
small scale dynamo ! 500 ! 1000 " 1 ? ?
MRI (with mean field) ! 10 — " 1 ? ?
MRI (without mean field) ! 15000 — " 1 ? ?
Plasma Instabilities ! Re ! 1000 " 1 ! 1 $ 1

Table 2: Dimensionless parameters required for addressing each
plasma process.

The process by which this
happens varies from one sit-
uation to another, but one
common essential feature
which is necessary for dy-
namos is that the magnetic

Reynolds number, Rm, be
large: Rm ≡ µ0σLU is a di-
mensionless parameter con-
structed from the conductiv-
ity σ, the size of the object
L, and the characteristic ve-
locity U and quantifies the
ratio of generation of magnetic field by sheared flows and the dissipation by electrical resistivity.
Table 2 gives an estimate of the minimum value of Rm needed for studying the processes listed
above. It is very important to recognize that these processes can be investigated without matching
their corresponding astrophysical values.

Recently, several experiments investigating self-generation of magnetic fields have been carried
out using flows of liquid metals (either sodium or gallium) as a conducting medium to achieve the
high Rm values needed to investigate magnetic field generation. Liquid metals are conducting,
satisfy the MHD equations, and require no magnetic field to provide initial confinement and hence
C " 1. For very idealized, laminar velocity fields the critical value of Rm for self-generation of
magnetic fields is predicted by theory to be around 100. The conductivity of sodium (which melts
at 100 C) is a decreasing function of temperature (like all metals) and numerically equal to 107

mho-m, so that Rm ≈ 12amUm/s: experiments which investigate self-excitation require a ∼ 1 m,
and V ∼ 10 m/s so to achieve marginally large enough Rms to be in an interesting MHD regime.
To achieve these parameters using liquid sodium in an experiment of radius L=0.5 m requires a
mechanical input power of Pmech ∼ 100 kW. Unfortunately, turbulent flows have the somewhat
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Plasma Parameters

plasma radius a 1.5 m
density n 1017—1019 m−3

electron temperature Te 2—20 eV
ion temperature Ti 0.5—2 eV
peak flow speed Umax 0—20 km/s
ion species H, He, Ne, Ar 1, 4, 20, 40 amu
magnetic field r < 1.2 m <0.1 gauss
magnetic field at cusp >104 gauss
current diffusion time µ0σa2 50 msec
pulse length τpulse 5 sec
heating power P < 0.5 MW

Rmmax > 1000
Re 24—3.8×106

Pm 3×10−4—56
C 10−4

β 104

Table 3: Plasma parameters of proposed experiment.

Experimental Campaigns. The
plasma dynamo facility offers great
experimental flexibility that can be
used to set up experiments to ad-
dress each of the plasma processes
described above. To begin with, we
plan to use LaB6 cathodes in the
plasma interior for plasma genera-
tion and heating; to further increase
the electron temperature we will be
proposing to use a microwave heat-
ing scenario similar to that used in
helicon sources and/or low energy
neutral beam heating, both of which
appear feasible. Characterization of
the plasma will initially rely upon
probes, optical diagnostics, and mi-
crowave diagnostics. As with any
new experiment, there will be a sig-
nificant amount of experimentation
required to understand plasma generation, develop heating scenarios, develop diagnostics, etc., and
it is understood that the experiments on field generation will depend upon the detailed plasma
behavior.

In what follows, a set of campaigns are proposed that will address the primary plasma processes
laid out above. In the spirit of a whitepaper, we have left out the detailed calculations (primarily
direct numerical simulations) that establish the feasibility of each campaign.
Large scale dynamos. Several different routes are believed to be capable of self-generating a
large scale dynamo in this experiment. The first approach uses a laminar, two vortex flow similar
generated by oppositely directed rotation in each hemisphere. This flow is similar to the the
laminar, two vortex flow first described in Dudley and James [6] has been shown to self-excite
above Rmcrit > 350. Varying the Prandtl number (primarily by varying the ion mass) should
allow this geometry to be investigated both with (high Re) and without turbulence (low Re).
Second, initial calculations indicate that a convection driven (α−Ω) dynamo experiment is feasible.
Differential rotation (controlled by poloidal variations in overall rotation) can efficienty generate a
strong toroidal field from a relatively weaker poloidal field through the Ω effect. Helical turbulence
can be generated by injecting light ions into a strongly rotating, heavy ion flow (the light ions
are buoyant and will migrate to the center of the device; the helical turbulence is expected to
regenerate the poloidal field from the toroidal field and thereby close the feedback loop required for
self-excitation. The proposed geometry can easily be considered as testing the key plasma processes
responsible for the Sun’s dynamo.
Small scale dynamos, Turbulence, and Plasma Instabilities are a set of related topics
that are expected in turbulent, high Rm flows. Small scale dynamos are expected when Re is
sufficiently high (Re ≥ 1000) that the flow is turbulent and when Rm $ Re [17]. In this case,
turbulent magnetic fluctuations can spontaneously develop on scale lengths which are smaller than
the viscous dissipation scale. This unique parameter regime would require the development of
additional electron heating to bring the electron temperature into the range of 20-50 eV and thereby
elevate Rm into the range of 2000 to 5000. Turbulence can be studied with or without a dynamo
being present by applying a weak external seed field that can be amplified by the fluctuations in
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Two Vortex Plasma Dynamo Flow can be driven at 
boundary (spherical Von Karman Flow)

2

merous physical phenomena.
In this paper we present simulations of such an exper-

iment, using a 3D nonlinear MHD simulation code de-
veloped to simulate the Madison Dynamo Experiment12.
The relevant parameters which describe these simula-
tions are the magnetic Reynolds number, Rm = µ0σv0a,
where σ is the conductivity of the fluid, v0 a charac-
teristic speed, and a the radius of the sphere, and Pm,
the magnetic Prandtl number, which describes the ra-
tio of viscous to magnetic diffusion. No-slip boundary
conditions are used, and an electrically-insulating outer
boundary is assumed. By varying the outer toroidal
velocity field boundary condition different flow regimes
have been studied. In Section II we present boundary
conditions which result in flows which display dynamo
action. In Section III we describe how Keplerian flow pro-
files have also been simulated. These simulations are un-
stable to the Magnetorotational Instability (MRI) when
exposed to an axial applied magnetic field.

II. DYNAMO SIMULATIONS

Liquid metal experiments have recently succeeded in
magnetically self-exciting. The first two of these cases2,3

used pipes and baffles to carefully prescribe the flow. The
systems were not simply connected and the role of tur-
bulence in the experiments was unclear. The latest ex-
periment to dynamo is based on the Von Kármán flow13.
It is simply connected, impeller driven, and is very tur-
bulent. No experiments based on the Couette flow have
magnetically self-excited.

That a flow generated by a differentially rotating outer
boundary might magnetically self-excite is a bit of a sur-
prise. It is difficult to generate the poloidal flow needed
to sustain dynamo action14. This difficulty manifests it-
self in the very large critical magnetic Reynolds numbers,
Rmcrit, required for these flows to self-excite.

A. Von Kármán Flows

The first category of flows which magnetically self-
excite is based on the Von Kármán flow. In this case
the outer boundary rotates in opposite directions near
the poles of the sphere and rotates relatively little near
the equator. The boundary condition is presented in
Figure 1, and is constructed by having non-zero bound-
ary conditions for the even-numbered spherical harmonic
components, " = 2, 4, 6, 8. The steady state velocity
field which results from this boundary condition, for
Rm = 400 and Pm = 1, is given in Figure 2. The ve-
locity field is counter-rotating in the toroidal direction,
with a poloidal flow which rolls inward at the equator
and outward at the poles. The flow is axisymmetric.

The magnetic energy of this simulation, as a func-
tion of time, is given in Figure 3. The critical magnetic
Reynolds number for this flow, based on linear analysis, is
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FIG. 1: Toroidal boundary condition which generates a Von
Kármán-type flow.
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FIG. 2: Steady-state velocity field generated by the toroidal
boundary condition given in Figure 1, before the growing
magnetic field becomes important. In the left hemisphere are
the contours of toroidal speed, and in the right hemisphere
are the contours of the poloidal stream function. Note that,
as indicated in Figure 1, the peak speed is 1, but the scale
range has been reduced for clarity.

Rmcrit = 375, which explains the very slow growth rate of
the magnetic field. As is required for axisymmetric veloc-
ity fields, the excited magnetic field is non-axisymmetric,
dominated by m = 1 modes.

B. Equatorially Symmetric Boundaries

Equatorially-symmetric boundary conditions also ex-
ist which generate velocity fields which magnetically self-
excite. A boundary condition built using odd-numbered
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FIG. 1: Toroidal boundary condition which generates a Von
Kármán-type flow.
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boundary condition given in Figure 1, before the growing
magnetic field becomes important. In the left hemisphere are
the contours of toroidal speed, and in the right hemisphere
are the contours of the poloidal stream function. Note that,
as indicated in Figure 1, the peak speed is 1, but the scale
range has been reduced for clarity.

Rmcrit = 375, which explains the very slow growth rate of
the magnetic field. As is required for axisymmetric veloc-
ity fields, the excited magnetic field is non-axisymmetric,
dominated by m = 1 modes.
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FIG. 3: Energy versus time for the boundary condition given
in Figure 1. For this run Rm = 400.
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FIG. 4: Toroidal boundary condition based on odd-numbered
spherical harmonic components, ! = 1, 3, 5, 7.

spherical harmonic components, ! = 1, 3, 5, 7, is pre-
sented in Figure 4. In contrast to the boundary con-
dition presented in Figure 1, this boundary condition
has several large-amplitude sign changes. The result-
ing steady state velocity field is presented in Figure 5.
This boundary condition generates much more flow than
the previous example. Its poloidal flow is considerably
stronger, and toroidal velocity field fills whole sphere.
With such a stronger velocity field it comes as no sur-
prise that Rmcrit = 280 for this flow, much lower than
the previous example.

III. MRI SIMULATIONS

Dynamo physics is not the only physics accessible with
such an experiment. Because the velocity field, to some
extent, can be fine-tuned, many velocity fields which re-
quire dedicated experiments to be generated can be pro-
duced. For example, a boundary condition that follows
a Keplerian profile is plotted in Figure 6. This boundary
condition is Keplerian (vφ ∼ ρ−

3

2 , where ρ is the cylin-
drical radial coordinate) in the range 0.3 ≤ θ ≤ π − 0.3.
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FIG. 5: Steady state velocity field generated by the toroidal
boundary condition given in Figure 4, before the magnetic
field energy becomes large. The plotting convention is the
same as in Figure 2.
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FIG. 6: Toroidal boundary condition which follows a Keple-
rian flow profile. Odd-numbered spherical harmonic compo-
nents, ! = 1 − 17, are used to generate this profile.

However, the flow generated by the boundary, presented
in Figure 7 with Rm = 300 and Pm = 1, is not Kep-
lerian. To show this, Figure 7 presents the toroidal ve-
locity field at the equator, as a function of radius. It is
clear that vφ

(

π
2

)

∼ r−0.76 for much of the radial range.
Nonetheless, the flow satisfies the conditions required to
be unstable to the MRI in much of the volume of the
sphere15.

Part of the time evolution of the instability is presented
in Figure 9, wherein is plotted the energy in the domi-
nant toroidal velocity field modes of the simulation, as
a function of time, in resistive units. Initially no ex-
ternal field is applied, and the dominant velocity field

 Plasma Rm=300, Re=100
 Te=10 eV
 U=10 km/s,
 n=1018 m-3

 Hydrogen
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More complicated large scale dynamo flows (even 
time dependent) are possible (difficult mechanically)
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FIG. 3: Energy versus time for the boundary condition given
in Figure 1. For this run Rm = 400.
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FIG. 4: Toroidal boundary condition based on odd-numbered
spherical harmonic components, ! = 1, 3, 5, 7.

spherical harmonic components, ! = 1, 3, 5, 7, is pre-
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dition presented in Figure 1, this boundary condition
has several large-amplitude sign changes. The result-
ing steady state velocity field is presented in Figure 5.
This boundary condition generates much more flow than
the previous example. Its poloidal flow is considerably
stronger, and toroidal velocity field fills whole sphere.
With such a stronger velocity field it comes as no sur-
prise that Rmcrit = 280 for this flow, much lower than
the previous example.
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Dynamo physics is not the only physics accessible with
such an experiment. Because the velocity field, to some
extent, can be fine-tuned, many velocity fields which re-
quire dedicated experiments to be generated can be pro-
duced. For example, a boundary condition that follows
a Keplerian profile is plotted in Figure 6. This boundary
condition is Keplerian (vφ ∼ ρ−

3

2 , where ρ is the cylin-
drical radial coordinate) in the range 0.3 ≤ θ ≤ π − 0.3.
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FIG. 5: Steady state velocity field generated by the toroidal
boundary condition given in Figure 4, before the magnetic
field energy becomes large. The plotting convention is the
same as in Figure 2.
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rian flow profile. Odd-numbered spherical harmonic compo-
nents, ! = 1 − 17, are used to generate this profile.
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FIG. 5: Steady state velocity field generated by the toroidal
boundary condition given in Figure 4, before the magnetic
field energy becomes large. The plotting convention is the
same as in Figure 2.
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FIG. 6: Toroidal boundary condition which follows a Keple-
rian flow profile. Odd-numbered spherical harmonic compo-
nents, ! = 1 − 17, are used to generate this profile.

However, the flow generated by the boundary, presented
in Figure 7 with Rm = 300 and Pm = 1, is not Kep-
lerian. To show this, Figure 7 presents the toroidal ve-
locity field at the equator, as a function of radius. It is
clear that vφ

(

π
2

)

∼ r−0.76 for much of the radial range.
Nonetheless, the flow satisfies the conditions required to
be unstable to the MRI in much of the volume of the
sphere15.

Part of the time evolution of the instability is presented
in Figure 9, wherein is plotted the energy in the domi-
nant toroidal velocity field modes of the simulation, as
a function of time, in resistive units. Initially no ex-
ternal field is applied, and the dominant velocity field

✦ Rmcrit = 250
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FIG. 4: Toroidal boundary condition based on odd-numbered
spherical harmonic components, ! = 1, 3, 5, 7.

spherical harmonic components, ! = 1, 3, 5, 7, is pre-
sented in Figure 4. In contrast to the boundary con-
dition presented in Figure 1, this boundary condition
has several large-amplitude sign changes. The result-
ing steady state velocity field is presented in Figure 5.
This boundary condition generates much more flow than
the previous example. Its poloidal flow is considerably
stronger, and toroidal velocity field fills whole sphere.
With such a stronger velocity field it comes as no sur-
prise that Rmcrit = 280 for this flow, much lower than
the previous example.

III. MRI SIMULATIONS

Dynamo physics is not the only physics accessible with
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extent, can be fine-tuned, many velocity fields which re-
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duced. For example, a boundary condition that follows
a Keplerian profile is plotted in Figure 6. This boundary
condition is Keplerian (vφ ∼ ρ−
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drical radial coordinate) in the range 0.3 ≤ θ ≤ π − 0.3.
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in Figure 9, wherein is plotted the energy in the domi-
nant toroidal velocity field modes of the simulation, as
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FIG. 7: Toroidal boundary condition which follows a ρ−1 pro-
file in the range 0.3 < θ < π − 0.3. Odd-numbered spherical
harmonic components, $ = 1 − 17, are used to generate this
profile.
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FIG. 8: Steady state velocity field generated by the toroidal
boundary condition given in Figure 7, before a magnetic field
is applied. The plotting convention is the same as in Figure 3.

mode simulated by the instability is axisymmetric, as is
expected for the most-easily-destabilized MRI modes.20
This mode grows in time until its energy approaches that
of the originally-dominant modes. At this point a back-
reaction occurs, and the dominant velocity field modes
adjust themselves to allow saturation of the instability.
At t ! 2.5τσ the applied field is again increased, this
time to 10 Gauss. This destabilizes the instability, and
the even-numbered modes decay away.
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FIG. 9: Toroidal velocity field at the equator versus radius,
for the velocity field presented in Figure 8. The velocity field
roughly follows a Keplerian toroidal flow profile, r−0.5, for
r > 0.5.
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FIG. 10: Energy in the toroidal velocity field modes, as a
function of time. Spherical harmonic mode numbers, ($, m),
are in the upper left corner of the plot. Initially no magnetic
field is applied. At t " 0.5τσ a field of 2 Gauss is applied.
At t " 1.14τσ the field is increased to 5 Gauss and the MRI
begins to grow. At t " 2.5τσ the field is increased to 10 Gauss,
and the instability decays.

IV. DISCUSSION

We have presented three velocity fields which are
forced solely by a differentially rotating outer boundary.
Two of these are magnetically unstable, while a third is
unstable to the MRI. These are just three of the many
possible velocity fields which could be generated by such
an experiment. Other boundary conditions which might
be of interest include

• solar-type boundary conditions, where the equator
spins much faster than the poles.

• gas-giant-type boundary conditions, where the sur-
face contains many prograde and retrograde jets.
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FIG. 7: Toroidal boundary condition which follows a ρ−1 pro-
file in the range 0.3 < θ < π − 0.3. Odd-numbered spherical
harmonic components, $ = 1 − 17, are used to generate this
profile.
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FIG. 10: Energy in the toroidal velocity field modes, as a
function of time. Spherical harmonic mode numbers, ($, m),
are in the upper left corner of the plot. Initially no magnetic
field is applied. At t " 0.5τσ a field of 2 Gauss is applied.
At t " 1.14τσ the field is increased to 5 Gauss and the MRI
begins to grow. At t " 2.5τσ the field is increased to 10 Gauss,
and the instability decays.
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harmonic components, $ = 1 − 17, are used to generate this
profile.
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field is applied. At t " 0.5τσ a field of 2 Gauss is applied.
At t " 1.14τσ the field is increased to 5 Gauss and the MRI
begins to grow. At t " 2.5τσ the field is increased to 10 Gauss,
and the instability decays.
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Prototype Experiment is being constructed 
to study a plasma Couette Flow
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Plasma Couette Flow Experiment is a prototype for 
dynamo experiment



 Main Results from Madison Experiment
 Dipole generation by turbulence
 measurement of the magnetic field generated by 

fluctuations

 Intermittent self-excitation 
 Overview of Plasma Dynamo Experiment

 Rm=1000, arbitrary Pm, flexible boundary conditions
 Plasma Couette flow experiment just beginning

Summary


