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Geodynamo modelling
Nondimensional N-S equation e.g. (Fearn 98)

• Parameters:
Ekman number E = O(10-15)
Rossby number Ro=O(10-8)
Rayleigh number Ra >> 1, q= O(10-5)

• Magnetostrophic balance:



Immediate consequences

1.Take azimuthal component
2. Average over cylinders aligned with 

rotation axis



Vanishing of Coriolis term

End caps
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To show that the cylindrical average of

vanishes

Assumptions: 
• incompressible flow (anelastic works also, Smylie et. al. 1984); 
• impenetrable boundary



Taylor’s constraint

1. Any field satisfying the constraint is termed a 
Taylor state (TS).

2. Infinitely many constraints, one for each 
cylindrical radius s.

(J.B. Taylor, 1963)



Taylor States

• Geodynamo models produce fields
that are not Taylor states….but look realistic

(a) Correct asymptotic regime or
(b) Chance ?

• Properties of TS that we’d like to know
(a) characteristic spectrum?
(b) common features?
(c) do geodynamo model fields look similar to TS?



Observational perspective
What can we learn about interior structure from 
surface observations?

Br,Bθ ,Bφ unknown a priori

But B ⋅ dS = 0
V
∫ for any volume V, 

so only S,T unknown

Now

Reduction to only one unknown scalar?

Add in observations at r=1
How constrained is the interior field?



Geomagnetic observations

Question: “What is beneath the core-mantle boundary?”



• Much effort from 1970’s to find any Taylor state

Quest for the holy grail Taylor state

• Limited progress with axisymmetric models, solve   
mean-field equations with small E.
(Soward & Jones, 1983; Hollerbach & Ierley, 1991; Fearn & Proctor, 1987)

Tay =
rms

C (s)
∫ ∇ × B × B( )φ dφdz

rms
C (s)
∫ ∇ × B × B( )φ

2 dφdz

Rotvig & Jones, 2002

• 3D geodynamo models with small E.



Constructing a Taylor State
B = ci Bi

1

N

∑
N2 contributions to

Write B in finite modal expansion

If each independent algebraic form, 
set each to zero to satisfy Taylor’s 
constraint (worst case).

N2 constraints (now finite), N degrees of freedom.

No solution.



New results I
Since               ,expand in poloidal/toroidal

B = ∇ ×∇ × (Sˆ r ) + ∇ × (Tˆ r )

S = al,m,nYl
m (θ,φ)Pn

l (r)
l,m,n∑

T = bl ,m,nYl
m (θ,φ)Pn

l (r)
l,m,n∑

and spherical harmonics with some appropriate polynomial 
radial basis..

Pn
l (r)with chosen such that B is smooth

(not trivial in spherical polar
coordinates)

∇ ⋅ B = 0



New Results II

…and if we use finite truncation for B, the series 
terminates with

Number terms << N    (Livermore et. al. 2008)

Of course, as truncation             
then number of constraints also          
.

→∞
→∞

Adopting this expansion then…

Taylor states ubiquitous



Counting constraints 
Spherical harmonics are polynomials
Radial basis functions are polynomials

is a polynomial in s (up to a factor of           )

Every contribution to

(1− s2 )

Key point: polynomials are closed under addition.



Toy problem:    

c2c4s2 1− s2 8 + 3s2( )+ c3c2s
2 1− s2 2 +11s2( )

T(s) = c1c2s
2 1− s2 4 + 5s2( )+ c1c3s

2 1− s2 1+ 7s2( )+

gives 2 homogeneous constraints in 4 unknowns

4c1c2 + c1c3 + 8c2c4 + 2c3c2 = 0
5c1c2 + 7c1c3 + 3c2c4 +11c3c2 = 0

T(s) = c1c2 sin(s) + c1c3 cos(s) +

c2c4 tan(s) + c3c2s
2 1− s2 (5 +11s2)

gives 4 homogeneous constraints
trivial solution.

B = ci Bi
1

4

∑



Counting constraints II
Consider expanding radially in spherical Bessel functions     
suitable for electrically insulating exterior.jl (ν nr)

Each contribution to

is some independent algebraic form, requiring the full
N2 set of constraints - worst case scenario

N2 constraints, N degrees of freedom.

No solution.



Nonlinearity
Despite reduction to finite number of constraints 

(even using polynomials), still have quadratic 
nonlinearity:

Ai = Q(almn,blmn )

Q is sparse, can be exploited to find exact Taylor states.



• Take observed poloidal magnetic field up to L=3; extend into core 
using simple profile. Toroidal field is unconstrained by observation.

• Expand toroidal field in 4 low degree axisymmetric basis functions.

A Suite of exact Taylor States
in a full sphere

In this case:
No quadratic coupling between toroidal terms
(not immediately obvious, but true); hence problem is linear.

• 3 constraints (3 terms in series).
• Linear problem for toroidal field with 4 unknown coefficients.
• One parameter family of solutions.



A Suite of exact Taylor States

Contours of Bϕ



Conclusions
• Finitely truncated field, Taylor’s constraint amounts to a finite 
set of conditions.
- Exact number depends on radial basis.
- Similar (in number) to matching to an electrically insulating 
exterior.

Preprint at    http://igpppublic.ucsd.edu/~plivermore/

• Can find exact Taylor states - although not dynamo generated.
- Look for general characteristics of TS.
- Investigate extremal models e.g. TS of least energy or  
dissipation consistent with observations.
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