Turbulence and dynamo action in galaxy clusters

Anvar Shukurov

School of Mathematics and Statistics, Newcastle, U.K.

with

Kandaswamy Subramanian

IUCAA, Pune, India

&

Nils E. L. Haugen

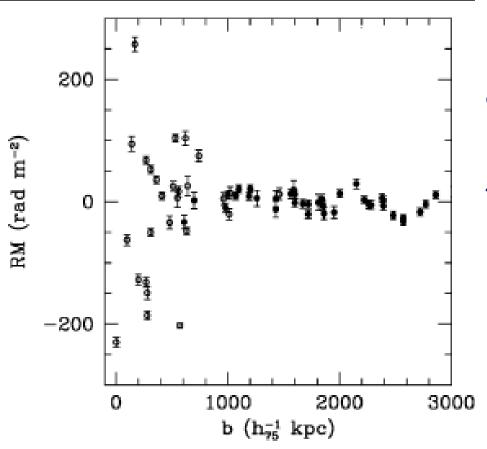
Univ. Sci. & Technology, Trondheim, Norway

KITP, 14/07/2008

Galaxy clusters

Size $L \cong 1$ Mpc $N \cong 1000$'s galaxies

Coma, rich cluster


- Gas density $n \cong 3 \times 10^{-3} \text{ cm}^{-3}$
- Temperature $T \cong 10^8$ K
- Sound speed $c_{\rm s} \simeq 10^3$ km/s
- Mean free path $\lambda\cong$ 5 kpc

X-rays from hot gas (ROSAT), evidence of merger

Evidence of intracluster magnetic field

Synchrotron emission (from a dozen clusters)

Faraday rotation in a random magnetic field (from many clusters)

 $\sigma_{\rm RM} \cong 100-200 \text{ rad/m}^2$ $\ell_B \cong 10-20 \text{ kpc}$ $B \cong (5-10)(\ell_B/10 \text{ kpc})^{-\frac{1}{2}} \mu \text{G}$

RM of background radio sources vs. impact parameter for 16 galaxy clusters; filled symbols: field sources (Clarke et al., 2001)

A few words on the fluctuation dynamo

1. Linear (kinematic) behaviour

(Zeldovich et al., The Almighty Chance, World Sci., 1990)

- Any random flow can generate random magnetic field if only $R_{\rm m} > R_{\rm m,cr} \cong 30-100$.
- e-folding time of $B_{\rm rms}$ due to motions at scale ℓ : $\tau(\ell) \cong \ell / \nu(\ell)$.
- For $v(\ell) \propto \ell^{1/3}$, B grows faster at smaller scales, $\tau(\ell) \propto \ell^{-2/3}$.
- Intermittent magnetic field is (i.e, not volume-filling); magnetic filaments & sheets, thickness $l_B \cong l_0 R_m^{-1/2}$.

2. Non-Linear behaviour: controversial

Saturation at
$$\frac{1}{8\pi}B_{\rm rms}^2 \simeq \frac{1}{2}\rho v_0^2$$
. ????

Thicker magnetic sheets:

 $l_B \cong l_0 R_{m,cr}^{-1/2}, R_{m,cr} \cong 30-100$ (Subramanian, *PRL* 1999)

(other opinion: Schekochihin et al. 2004)

Cluster turbulence & magnetic fields: three evolutionary stages

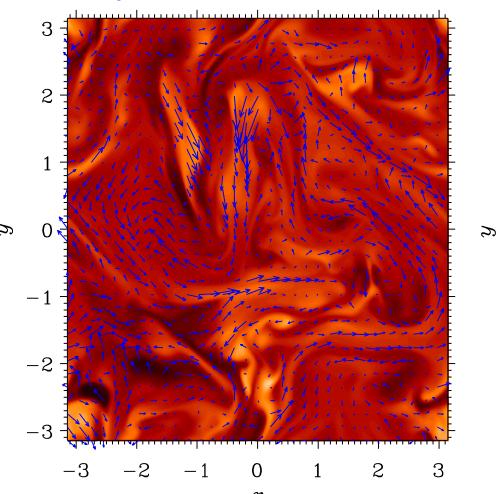
Stage 1. Cluster formation, 0 < *t* < 4 Gyr

- □ Volume-filling random flow, $v_0 \cong 300$ km/s, $\ell_0 \cong 150$ kpc,
- produced in a major merger event;
- $\square Re > 100 \Rightarrow turbulence$
- **Fluctuation dynamo**: *B* amplified by a factor A > 3000, ■ magnetic sheets, $B \cong 2 \mu G$, $\ell_B \cong 20-30 \text{ kpc}$ (if $B_0 > 10^{-9} \text{ G}$),
- $\Box \quad \sigma_{RM} \cong 200 \text{ rad/m}^2$

Stage 2. Decay after major mergers, 4 < *t* < 9 Gyr

When the driving ceases, turbulence decays, $v_0 \propto t^{-3/5}$, $\ell_0 \propto t^{2/5}$ $\Rightarrow v_0 \cong 150$ km/s, $\ell_0 \cong 300$ kpc at t = 9 Gyr,

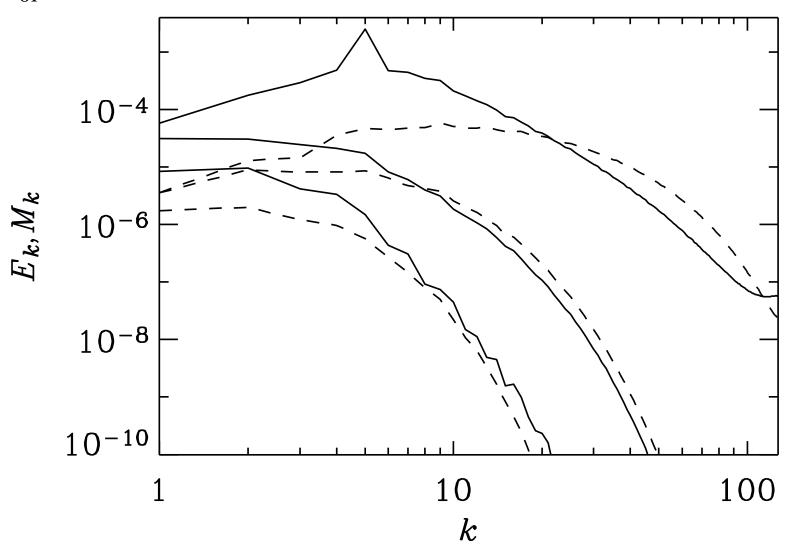
but magnetic field remains maintained by dynamo action, $A > 2 \times 10^4$, $B \cong 1 \ \mu$ G, $\ell_B \cong 40 \ \text{kpc}$


 $R_{\rm m}$, Re $\propto t^{-1/5}$, $\sigma_{\rm RM} \propto t^{-2/5}$

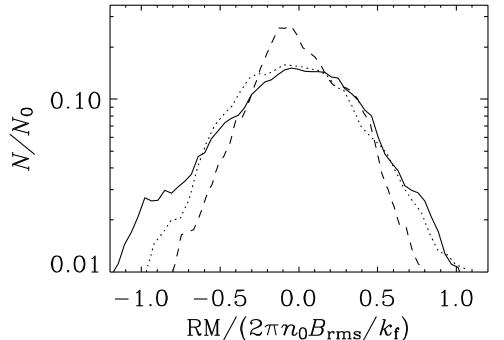
Magnetic field in turbulent flow

3D, 256³ resolution, $\ell_0 = L_{\text{box}}/1.5$, **M** = 0.1, Re = $R_{\text{m}} = 420$. **Colour: B**_{//}; vectors: **B**_⊥

Steady state


Decaying turbulence

2 2


Dynamo action in decaying turbulence:

energy spectra: kinetic (solid) & magnetic (dashed), $t/t_{0i} = 0, 10, 50$

Observational signatures

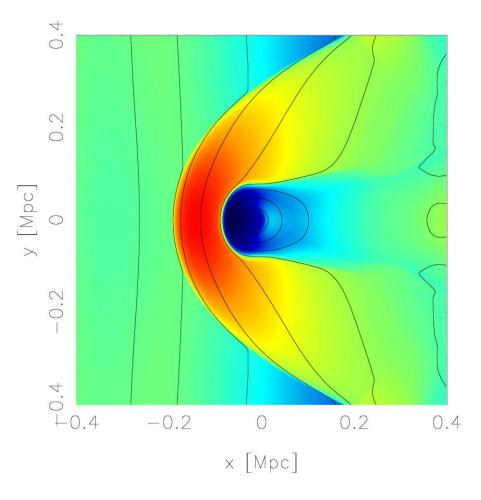
□ Random Faraday rotation, $\sigma_{\rm RM0} \cong 200 \text{ rad/m}^2$, $\sigma_{\rm RM} \propto t^{-2/5}$

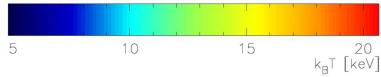
Histogram (PDF) of RM, 256³ simulation, steady state:

•
$$P_{\rm m} = 1$$
 (solid),

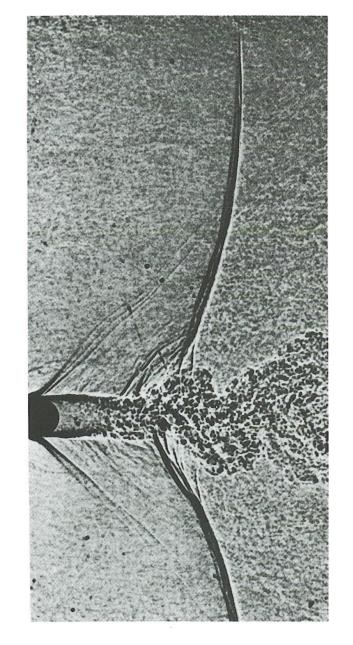
•
$$P_{\rm m} = \frac{1}{4}$$
 (dotted),

•
$$P_{\rm m} = 30$$
 (dashed)


□ Only a few turbulent cells along a line of sight \Rightarrow polarization of synchrotron emission, $p/N^{1/2} \cong$ a few % at 6 cm, filamentary structures


Stage 3. Mature cluster: turbulence in the wakes of galaxies and galaxy groups

Clumps $m = 3 \times 10^{13} M_{\odot}$ falling into cluster $M = 10^{15} M_{\odot}$ every $\Delta t \propto m^{-1/2} \approx 0.3$ Gyr (Lacey & Cole 1993),


- gas stripping radius $R_0 \cong 100$ kpc,
- wake length $\frac{X}{R_0} = 27 \left(\frac{\text{Re}}{10^3}\right)^3$ (Prandtl's turbulent wake)
- \Box $v_0 \cong 250$ km/s, $\ell_0 \cong 200$ km/s, $B \cong 2 \ \mu\text{G}$, $\ell_B \cong 30$ kpc.
- □ Volume filling factor: $f_V \simeq 0.02 \left(\frac{\text{Re}}{10^3}\right)^5$
- Area covering factor: $f_S \simeq 0.2 \left(\frac{\text{Re}}{10^3}\right)^4$
- Other sources of turbulence? see Jim Stones' talk this morning

Wake of a subcluster $1.4 \times 10^{14} M_{\odot}$ falling radially to $8.6 \times 10^{14} M_{\odot}$ cluster, X-ray surface brightness, $M \cong 0.9$ (Takizawa 2005)

Turbulent wake behind a cylinder, M = 0.95 (Van Dyke 1982, No. 222)

Turbulence, magnetic fields & Faraday rotation

Evolution stage	Duration	v_0	l_0	t_0	B_{eq}	l_B	$\langle B^2 \rangle^{1/2}$	$\sigma_{\sf RM}$
	[Gyr]	[km/s]	[kpc]	[Gyr]	$[\mu G]$	[kpc]	$[\mu G]$	[rad/m ²]
Major mergers	4	300	150	0.5	4	25	1.8	200
Decaying turbulence	5	130	260	2.0	2	44	0.8	120
Subcluster wakes		260	200	0.8	4	34	1.6	110
Galactic wakes		300	8	0.03	4	1.4	1.6	5