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Introduction

Numerical modelling of self-consistent dynamos has made noticeable progress in the
last decade due to the progress in computer technology. Almost all of physical models
are based on the same numerical method, namely the spectral method. However, they
are not able to run in an Earth-like parameter regime because of the considerable
spatial resolution that is required. At some resolution, grid methods could be more
efficient on parallel computer architectures. The control volume method is one of the
local methods which would be available for dynamo simulations, and which achieves a
given accuracy at high resolutions.
It is an other numerical method available for numerical modelling of a self-consistent
dynamo, it was used to investigate the miscellaneous dynamo models for various input
parameters and geometric configurations and was successfully tested on the so-called
numerical dynamo benchmark for Case 0 and Case 2. The computations had high
demands on the computer time. The forward integration of the equations was possible
only with a very small time step. Results indicate that our code based on control
volume method is effective on large parallel systems (consisting of a few hundreds
of processors) and to expect that it will be much more effective than codes based on
the spectral methods on very large parallel systems (consisting of a few thousands of
processors), especially at the study of turbulence. We present the test on benchmark
solution, on the efficiency of our numerical code and of parallelization and a small
review of investigated models.

Control volume method

The basic strategy of the control volume method - to express the
differential equations in conservative form, integrate them over
the control volumes and convert every such integral into the sum
of fluxes over the boundary faces by means of Gauss’ theorem. It
is advantageous to employ a different grid for each component of
vector fields (and an additional grid for the scalar field).
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The equations are scaled with the outer radius of the shell L,
which makes the dimensionless radius rCMB = 1; the inner core
radius rICB is usually put equal to 0.35, which is the value valid
for the Earth.

Benchmark tests

G(r) = 0, E = 2.1125 × 10−4 (10−3) and Pr = 1

Case 0 – Non-magnetic convection, inner core co-rotating with the outer boundary

Ra = 76.92 (100) and q = 1

Kr Kθ Kϕ EK T Vϕ ω

35 35 64 61.986 0.4386 -9.958 0.2638
45 45 64 60.825 0.4316 -9.978 0.1123
55 55 64 60.563 0.4313 -10.029 0.0886
65 65 64 60.450 0.4312 -10.055 0.0984
85 85 64 60.282 0.4311 -10.082 0.1338
105 105 64 60.179 0.4310 -10.095 0.1556
45 45 96 59.994 0.4294 -10.121 0.0853
85 85 96 59.414 0.4291 -10.175 0.1187

Standard solution 58.348 0.4281 -10.157 0.1824

where Kr, Kθ, Kϕ are numbers of grid points, EK is the mean kinetic energy, T is the local temperature and Vϕ local
velocity and ω is the drift velocity. The bottom line corresponds to the suggested standard solution.

Case 2 – Dynamo with a conducting and freely rotating inner core

Ra = 85 (110) and q = 5

Kr Kθ Kϕ Ek Em Eic
m ω ωic

65 65 120 45.082 870.69 849.34 -4.1811 -2.9337
85 85 160 43.691 857.27 834.09 -3.9731 -2.7993

Standard solution 42.388 845.60 822.67 -3.8027 -2.6595

where Ek is the mean kinetic energy, Em the mean magnetic energy in the shell, Eic
m the mean magnetic energy in the core,

ω is the drift velocity and ωic angular frequency of differential rotation of the inner core.

Vr, Vθ, Vϕ: 85 × 85 × 160 Br, Bθ, Bϕ: 85 × 85 × 160

Test on the efficiency of parallelization

Number of processors Time steps / 1 hour Time steps / processor
3 × 3 + 2 3 412 379
5 × 5 + 2 13 526 541
8 × 8 + 2 20 461 319

11 × 11 + 2 24 246 200
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Non-uniform stratification

G(r) =
9rr2ICB−12r+6r2r2ICB+60r2−2r2ICB−8+r4ICB−12rICBr2−6rr3ICB−18rICBr

r(r2ICB−4)

Ra = 550 and Pr = 1

E q Ek Em Eic
m ω ωic

10−1 8 805.3 3619 3365 -1.6541 -0.9337
10−2 5 773.6 3403 2722 -1.5342 -0.7962
10−3 5 1459 16049 14922 -1.5913 -0.8527
10−4 2 2318 44042 40950 -1.6443 -0.9116

E = 10−4

Vr, Vθ, Vϕ Br, Bθ, Bϕ

Reversals & Thin shell

G(r) = 0, E = 3 × 10−3,
Pr = 1, Ra = 103 and q = 2

Vr, Vθ, Vϕ Br, Bθ, Bϕ

G(r) = 3, E = 3 × 10−4,
Pr = 10−1, Ra = 103, q = 8
and rICB = 0.67

Vϕ (top) and Bϕ (bottom)
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