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Preliminaries

Fractons

Fractons and quantum (and classical) glassiness

see Nandkishore & Hermele review
Vijay,  Haah, Fu
see Pretko — symmetric tensor gauge theories

w/ Claudio Castelnovo
w/ Claudio + David Sherrington (X-cube model from gonihedric model)

Restricted mobility excitations and ultra-slow systems
w/o finite T thermodynamic transitions

w/ Lei Zhang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein



Classical glassiness
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Classical glassiness
viscosity

Source: JOM, 52 (7) (2000)



Glassy H2O

Source: O. Mishima and H. E. Stanley’s groups; Nature (1998)



Physical aging

Source: L.C.E. Struik, Physical aging in amorphous polymers and other materials, Elsevier, Amsterdam (1978)



Physical aging II
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Orlyanchik & Ovadyahu,  PRL (2004)

2D electron glass

2D thin films of crystalline In2O3-x

Source: Orlyanchik & Ovadyahu,  PRL (2004)



Quantum glassy systems

disordered systems 
eg. quantum spin glasses

frustrated systems 
eg. 1 frustrated Josephson junctions  
with long-range interactions 

eg. II self-generated mean-field glasses 

Kagan, Feigel'man, and Ioffe, ZETF/JETP (1999)

Westfahl, Schmalian, and Wolynes, PRB (2003)

Bray & Moore, J. Phys. C (1980)
Sachdev & Ye, PRL (1993)
Read, Sachdev,  and Ye, PRB (1995)
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Topological quantum glasses
strongly correlated systems with 

topological order

eg. fractional quantum Hall effect

ν = 1/3 ⇒ NGS = 3
g

NGS = 3
1

NGS = 3
2

NGS = 3
3

Wen, Int. J. Mod. Phys. B (1991), Adv. Phys. (1995)Ground state degeneracy
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ν = 1/3 ⇒ NGS = 3
g

NGS = 3
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Interestingly enough, strong correlations that can lead to these exotic quantum spectral properties can 
in some instances also impose kinetic constraints, similar to those studied in the context of classical 
glass formers. 

Wen, Int. J. Mod. Phys. B (1991), Adv. Phys. (1995)Ground state degeneracy



Why solvable examples are important?

The dynamics of classical glasses can be efficiently simulated in a 
computer; but real time simulation of a quantum system is hard! 

Even a quantum computer does not help; quantum computers are 
good for unitary evolution. One needs a “quantum supercomputer”, 
with many qubits dedicated to simulate the bath. 

Solvable toy model can show unambiguously and without arbitrary 
or questionable approximations that there are quantum many-body 
systems without disorder and with only local interactions that are 
incapable (in accessible times) of reaching their quantum ground 
states.



2D example 
(not glassy yet)

Kitaev,  Ann. Phys. (2003) - quant-phys/97 
Wen, PRL (2003)Toric code (in Wen’s plaquette formulation)
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Defect dynamics

bath of quantum oscillators; 
acts on physical degrees of freedom
Caldeira & Leggett,  Ann. Phys. (1983) 
Feynman & Vernon, Ann. Phys. (1963)

Ĥ = Ĥ + Ĥbath + Ĥspin/bath

Ĥspin/bath =
∑

I,α

gα σα
I

∑

λ

(

aα
λ,I + aα

λ,I
†
)
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Defect dynamics

defects must go away to reach a GS

equilibrium concentration: c ≈ e
−h/T

defects cannot be annihilated;  
must be recombined

σ
x,y
I ⇒ simple defect diffusion (escapes glassiness)

σ
z
I ⇒ activated diffusion

Garrahan & Chandler, PNAS (2003) 
Buhot & Garrahan, PRL (2002) 

tseq.

∼ τ0 exp(2h/T )

equivalent to classical glass model by

(Arrhenius law)
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3D strong glass model
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Chamon, PRL (2005)

Bravyi, Leemhuis, and 
Terhal,  Ann. Phys. (2011)

Lx × Ly × Lz

g = 24 gcd(Lx,Ly,Lz)



3D strong glass model

always flip 4 octahedra: never simple defect diffusion

x, y

y, z
z, x
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∼ τ0 exp(2h/T ) (Arrhenius law)



What about quantum tunneling?

defect separation: ξ ≈ c−1/3
≈ eh/3T

virtual process: O[(g/h)ξ]

ttun. ∼ τ0 exp
[

ln(h/g) eh/3T
]

topological quantum protection quantum  OVER protection

ξ ≈ eh/3T
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3D fragile glass model

(super Arrhenius law)

EB = ε k

Classical triangular plaquette model

Newman & Moore, PRE (1999)

tseq. ∼ τ0 exp (Δ2/T2)

Figure 2 A triangle of side 2k can be flipped by flipping three triangles of
side 2k−1. The solid circles represent the defects and the lines indicate the
triangles to be flipped at each step.

barriers. As we have demonstrated above, the model has only one ground state, in which

there are no defects and all spins are zero. We now show that the elementary excitations of

the model—those states lying closest to the ground state—are trios of defects at the vertices

of an upward-pointing equilateral triangle of length ℓ = 2k on a side with integer k.

Equation (7) tells us that the spins below an isolated defect form a Pascal’s triangle

mod 2. If we take a finite region of the lattice in the form of an upward-pointing equilateral

triangle, each defect in it produces such a Pascal’s triangle. Then if the spins along the

top sides of the triangle are zero, the bottom row is the sum mod 2 of the corresponding

rows of each of the triangles. We call this row of spins the shadow of the region’s defects.

The sum of the Pascal’s triangles of an upward-pointing triangle of three adjacent defects

is zero; thus an move that flips all three conserves the shadow, and one defect configuration

can be reached from another by a series of local moves if and only if they have the same

shadow. In particular, only configurations with a zero shadow can be local excitations of

the ground state. It is then straightforward to show that no configurations with one or two

defects can have a zero shadow, and that the only such configurations with three defects are

those arranged in an upward-pointing triangle of side 2k.

Next, we ask what the energy barrier is for flipping a triangular excitation of a given size.

The minimum-energy path for flipping a triangle of side 2k involves flipping three triangles

of side 2k−1 in series, as shown in Figure 2. Since the intermediate state on this path has

four defects rather than three, the total energy barrier for the process is J higher than that

for flipping a triangle of half the size. This in turn is J higher than the barrier for flipping

9

ξ ∼ eε/2T ∼ 2k ⇒ k ∼ ε/T 2 ln 2

tseq. = τ0 exp (ε2/T2 2 ln 2)

tseq. ∼ τo exp(EB/T )



3D fragile glass model
Quantum model

10

FIG. 4: To annihilate three defects (shown in green) at the corners of an equilateral triangle, one must flip the spins in a
“fractal” membrane (containing sites shown in red) that stretches between the defects. For a triangle of size 2ℓ, there are
3ℓ sites in the membrane. The annihilation of the three defects through quantum tunneling is a virtual process of order the
number of sites that are involved (number of red sites). Hence, the amplitude for the quantum tunneling process vanishes
exponentially with the “volume” of the membrane.

Through quantum tunneling processes, defect annihilation can again occur via virtual processes in which the number
of defects is only larger in the intermediate (virtual) steps. The order in perturbation theory in g grows very fast with
defect separation. An example is shown in Fig. 4; basically, to annihilate three defects at the edges of an equilateral
triangle of size ξ = 2ℓ, one must flip 3ℓ original spins laying on a mold defined by a Sierpinski gasket. (Notice that
here the hierarchy is built staring from the microscopic scale.) So in perturbation theory the quantum recombination

process has an amplitude of order (g/h)3
ℓ

, which leads to recombination/equilibration times

ttun. ∼ exp
[
ln(h/g) e

ln 3

2 ln 2
h/T

]
,

which grows extremely fast as the temperature is lowered. Again, we learn from this simple estimation is that quantum
tunneling is less effective than classical sequential processes in thermalizing the system.

Summary

We have shown that there are local quantum Hamiltonians for which it is possible to show that the system resists
equilibration with a thermal bath. Indeed in the models studied, there is a “protection” against thermal equilibration
with any bath, as long as the physical degrees of freedom of the system only couple to the bath locally.

It is often believed that quantum tunneling provides an escape route against dynamical slowdown caused by height-
ened thermal energy barriers as the temperature is lowered. However, for the systems here presented, classical
sequential processes are more effective than quantum tunneling processes in thermalizing the system. The reason for
the freezing of quantum tunneling is that equilibration is through defect recombination, and as the density of defects
decrease at lower temperatures, the barrier widths increase with temperature.

The widening of the barrier widths is another way to say the following: as the defects grow apart, the size of
the object that has to quantum flip states to annihilate the defects grows. The order in perturbation theory scales
as a power of this object that extends between defects, and hence the amplitude for annihilating the defects via
quantum tunneling grows exponentially with the object size. Of course, the perturbative argument assumes that
the recombination is through processes with intermediate virtual higher energies. For this to happen, simple defect
diffusion must not occur, and this is precisely what happens in the the 3D models we discussed in this lecture.

8

(a)

(b)

(c)

FIG. 3: Sites of an hcp lattice. (a) The hcp lattice is comprised of two interpenetrating hexagonal lattices, show in red and
blue. Prisms are defined by as sets of five sites, two of which belong to one sublattice (top and bottom of the prism), and
three of which belong to the other and form a triangle that lies in the layer in between the top and bottom sites of the prism.
Five-spin interactions are defined on each prism as explained in the text. (b) Vertical view of the hcp lattice, which show that
the red and blue sublattices form triangular lattice planes. The blue sites stack on top of the red upward pointing triangles,
and the red sites stack on top of the downward pointing blue triangles. (c) Two prisms with topmost sites belonging to different
sublattices can share a common edge, and the five-spin operators defined on the two prisms commutte because minus signs
from commutting the σ

x and σ
z components appear twice, once for each shared site, and cancel.

Consider the system Hamiltonian as in Eq. (2), which is trivially written in terms of the OI operators, but com-
plicated in terms of the original spins σI . Because the OI all commute, the eigenvalues of the Hamiltonian can be
labeled by the list of eigenvalues {OI} of all the OI . Notice that O2

I = 11, and so each OI = ±1. In particular, the
ground state corresponds to OI = 1 for all I.

Because the number of spins equals the number N of sites, one may naively expect that the list {OI = ±1} exhausts
the 2N states in the Hilbert space. However, there are constraints that the OI satisfy when the system is subject
to periodic boundary conditions (compactified). Each of the two sublattices (q = 0, 1) of the hexagonal close-packed
structure can be further subdivided into Aq, Bq or Cq according to the three sublattices of the tripartite triangular
stacks of the simple hexagonal lattice. (So in all one has six sublattices A0,1, B0,1 and C0,1.) One can show that

∏

I∈Aq∪Bq

OI =
∏

I∈Bq∪Cq

OI =
∏

I∈Cq∪Aq

OI = 11 . (11)

In all, these are six constraints, but only four are independent, because the product of the three products in Eq. (11) for
the same q is trivially the identity. Therefore there are only 2N−4 independent {OI = ±1}. This implies, in particular,
that there is a ground state degeneracy of 24 = 16. This, again, is a topological degeneracy. The eigenvalues of a set
of four non-local (topological) operators T1,2,3,4 are needed to distinguish between the 16 degenerate ground states.

The operators T1,2,3,4 can be constructed as follows. Let the plane Pk,q be the set containing sites with fixed k and
q. Let

T1 =
∏

I∈P1,0∩(A0∪B0)

σz
I (12a)

T2 =
∏

I∈P1,0∩(B0∪C0)

σz
I (12b)

T3 =
∏

I∈P1,1∩(A1∪B1)

σz
I (12c)

T4 =
∏

I∈P1,1∩(B1∪C1)

σz
I . (12d)

7

periodic boundary conditions (compactified). One can show that

∏

I∈A

OI =
∏

I∈B

OI =
∏

I∈C

OI =
∏

I∈D

OI = 11 . (8)

There are four constraints; therefore there are only 2N−4 independent {OI = ±1}. This implies, in particular, that
there is a ground state degeneracy of 24 = 16. This is a topological degeneracy, and the eigenvalues of a set of four
non-local (topological) operators T1,2,3,4 are needed to distinguish between the 16 degenerate ground states.

The operators T1,2,3,4 can be constructed as follows. Let Pl = {I|j + k = l} be a set of points along a horizontal
plane. Notice that each plane contains sites in only two of the four sublattices A, B, C, D. For example P1 ⊂ A ∪ B
and P2 ⊂ C ∪ D. Define

T1 =
∏

I∈P1∩A

σz
I (9a)

T2 =
∏

I∈P1∩B

σz
I (9b)

T3 =
∏

I∈P2∩C

σz
I (9c)

T4 =
∏

I∈P2∩D

σz
I . (9d)

It is simple to check that [T1,2,3,4,OI ] = 0 for all I, and the T1,2,3,4 trivially commutte among themselves. Hence the
four eigenvalues T1,2,3,4 = ±1 of T1,2,3,4 can distinguish the 16 degenerate ground states.

In this model it is guaranteed that, for whichever component of spin enters in the coupling to the bath, it is
impossible to flip only a pair of defects and thus there is no mechanism for defect diffusion. The reason is that any
site is shared by 6 octahedra, and the operators OI for these cells are such that one can divide the 6 into 3 groups of
2 octahedra that will have in their definitions, respectively, the x,y, and z component of spin operator at the shared
site. Acting with either of the three components of the spin operator on this shared site will flip at least four defects.
Hence, glassiness is protected against any local thermal bath.

3D quantum fragile glass

The model displaying fragile like glassiness is constructed on a three-dimensional (3D) hexagonal close-pack lattice,
shown in Fig. 3. The lattice can be viewed as two interpenetrating simple hexagonal Bravais lattices displaced from

one another by 1
3a1 + 1

3a2 + 1
2a3, where a1 = (1, 0, 0), a2 =

(
1
2 ,

√
3

2 , 0
)
, and a3 = (0, 0, 1)) are the primitive vectors of

the simple hexagonal lattice. The sites belonging to the two intercalating lattices are shown in red and blue color in
Fig. 3. Each site can be labeled by i, j, k ∈ Z that index a site in the Bravais lattice spanned by a1,2,3, plus a q = 0, 1
that index each of the two sublattices – to shorten the notation, define a superindex I ≡ (i, j, k; q). At every lattice
site I one defines quantum spin S = 1/2 operators σx

I , σy
I , and σz

I .
Define now a prism cell PI that contains five lattice sites Jn(I), for n = 1, . . . , 5 as follows. For a given lattice site

I, the prism PI contains the site J1(I) = I, which belongs to one sublattice of the hexagonal close-packed lattice, the
three sites that belong to the other sublattice and that form an elementary triangle (sites J2, J3, J4) just below the
site I, and finally the site J5(I) just below that triangle, which belongs to the same sublattice as of site I. [In terms
of the lattice indices, J5(I) ≡ (i, j, k − 1; q) if I ≡ (i, j, k; q).] An example of two prisms is shown in Fig. 3c. Notice
that the two prisms shown share a common edge, and that their tops belong to distinct (red and blue) sublattices. It
is simple to see that the total number of prisms equals the number of spins: each lattice site I is the top vertex of a
single prism.

Now define the operators OI as

OI = σz
J1(I) σx

J2(I) σx
J3(I) σx

J4(I) σz
J5(I) . (10)

The operators commute, [OI ,OI′ ] = 0, for all pairs I, I ′. Again, it is simple to see how: if I, I ′ belong to the
same sublattice and the prisms PI , PI′ share a vertex, then they trivially commute as they both involve the same
component (x or z) of the spin operators σ at the shared site. If they belong to distinct sublattices, they either share
0 spins or an edge with 2 spins, as shown in Fig. 3. If they share 2 spins, the minus signs from commuting the x and
z components of spin in each of the shared sites appear an even number of times.

9

It is simple to check that [T1,2,3,4,OI ] = 0 for all I, and the T1,2,3,4 trivially commutte among themselves. Hence the
four eigenvalues T1,2,3,4 = ±1 of T1,2,3,4 can distinguish the 16 degenerate ground states.

There are relations between this 3D model and a 2D classical triangular plaquette model which has glassy behav-
ior [11, 12, 14]. The 2D triangular plaquette model has Ising spin variables defined on the sites of a triangular lattice,
and a 3-spin interaction which is the product of the Ising variables on the downward pointing triangular plaquettes
only. Defect Ising variables (the 3-spin products) are defined at the center of the downward triangles, and the energy
is trivial to write in terms of these defect variables: these are free Ising spins. However, the dynamics is rather
non-trivial in terms of the defects, for flipping an original spin correspond to flipping all three defects on the vertices
of upward pointing triangles in the dual lattice.

In our 3D model, each quantum spin σI is shared by 5 prisms: 3 whose centers are on the same plane, and 2 whose
centers are immediately above and below site I. If the system’s coupling to the bath contains the σy spin component,
all 5 prisms are flipped. The σz and σx components flip either the eigenvalues of the 3 prisms on the plane or the 2
prisms on the vertical direction, respectively. Flipping the eigenvalues of 2 prisms in the vertical direction would lead
to defect diffusion in that direction.

To connect our 3D quantum model to the triangular plaquette model, consider a compactified slab (periodic
boundary conditions) in the third dimension (parallel to a3), with M layers. Because of the periodic boundary
condition, the odd-even parity of the defect numbers are conserved along vertically stacked prisms regardless of the
system-bath spin-flip operator, σx, σy, or σz. The defect number parity can be captured by defining the following
operator (recall I ≡ (i, j, k; q)):

τi,j;q =
∏

k

O(i,j,k;q) . (13)

It is also useful to define a similar product over the third dimension for the original spins:

si,j;q =
∏

k

σx
(i,j,k;q) . (14)

These “slab” operators allows us to concentrate on subspaces of the Hilbert space with a given set of τi,j;q instead
of the states with given Oi,j,k;q . The dynamics has process that transfer quantum mechanical amplitudes within and
between these subspaces labeled by τi,j;q ; we can argue that the system is glassy by simply looking at the processes
that transfer amplitude between the subspaces.

The variables τi,j;q and si,j;q can effectively be used to relate our quantum model to two 2D systems (q = 0 or red,
and q = 1 or blue) defined on sites labeled by (i, j; q) of two distinct triangular lattices. The variables si,j;q can be
related to the original spin variables in the models of Refs. [11, 12, 14]. In particular, one can relate the si,j;q and the
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Annealing times

ttun. ∼ τ0 exp
[

ln(h/g) eh/3T
]

ξ ≈ eh/3T

Quantum annealing Thermal annealing

tseq. ∼ τ0 exp (Δ2/T2)

tseq. ∼ τ0 exp (Δ/T )

Ex. II super-Arrhenius law

Ex. I:  Arrhenius law

tseq. ∼ τ0 exp ( Δ
h

ln ξ)
α

ttun. ∼ τ0 exp [ln(h /g) ξ]

“Solving” a problem of size L



Annealing times

Quantum annealing Thermal annealing

tseq. ∼ τ0 exp ( Δ
h

ln L)
α

ttun. ∼ τ0 exp [ln(h /g) L]

“Solving” a problem of size L

exponential time in L

tseq. ∼ τ0 L
Δ
h

polynomial time in L

α = 1
Arrhenius

α > 1
super-Arrhenius

tseq. ∼ τ0 L ( Δ
h )

α
(ln L)α−1

quasi-polynomial time in L

Example of exponential time for thermal annealing?



Example of a system w/o disorder and 
double-exponential in T relaxation

• Provable absence of a thermodynamic phase transition

• Sub-extensive ground state degeneracy (scaling with the boundary) 

• Relaxation times to (a) ground state is double-exponential in T

w/ Lei Zhang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein
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Example of a system w/o disorder and 
double-exponential in T relaxation

vertex model w/ twin spins on the bonds

q = 0, 1,…, 2n − 1
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Thermodynamics:
absence of a phase transition
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transfer matrix

3

by

H = H
gates

+H
links

+H
boundary

, (1a)

H
gates

= �

NgatesX

g=1

T g[�
in
(g),�out

(g)] , (1b)

H
links

= � J
X

`

�in
` �out

` , (1c)

H
boundary

= � h
X

`2L@

�
�in
` + �out

`

�
. (1d)

The function T g is the negation of the function Tg that en-
codes the truth table of gate g: if the input and output spins
satisfy the gate, Tg = 1 (T g = 0), and if they do not, Tg = 0

(T g = 1). H
gates

penalizes configurations (i.e. cost energy
�) if the input and output bits (or their spin equivalents) vi-
olate the truth table of the gate. The neighbor-gate compat-
ibility is implemented through H

links

, containing ferromag-
netic terms of strength J > 0 that enforce alignment between
connected inputs and outputs of neighboring gates (sharing a
link). Finally, H

boundary

describes local bias fields hi that
fix the states of a subset of spins with indices ` 2 L@ when
h ! 1. These biases are applied at the boundaries so as to
fix either the factors to be multiplied or the product to be fac-
torized, which brings us to an important point on which we
expand below.

By fixing S = 0, the bits of a and b, and ancillary inputs
c = 0 and outputs c0 = 0 using external fields hi in Eq. (1), the
model performs the multiplication S0

= a ⇥ b upon reaching
the minimum energy state. Alternatively, factorization of the
2L-bit integer S0 is implemented by appropriate selection of

external fields hi that fix the bits of S0 and c = c0 = 0, while
leaving the spins belonging to a and b free. In the case of
multiplication, the ground state is uniquely determined by the
boundary, since there is only one product S0 for given fixed
factors a and b. On the other hand, depending on the number
S0 to be factorized, there may be many solutions. For a semi-
prime 2L-bit number that is the product of two L-bit prime
numbers, there are two solutions (differing by where the num-
bers a and b settle along the boundaries, since a⇥ b = b⇥ a).

Yet another choice of boundary condition is to simply leave
all spins free at the boundary. We shall concentrate on this
case, for which we prove in Sec. III that no thermodynamic
phase transition occurs down to zero temperature. In spite
of the absence of any thermal phase transition, we show in
Sec. IV that thermal annealing to the ground state is extremely
slow – doubly exponential in inverse temperature – providing
an example of dynamical freezing without disorder or thermo-
dynamic transitions. (We note that the ultra-slow relaxation
encountered in the bulk of the system makes thermal anneal-
ing a poor method for tackling multiplication or factoring, as
we also observed in our simulations.)

III. THERMODYNAMICS

In this Section, we derive the exact expression for the parti-
tion function of the model defined in Sec. II using the transfer
matrix method, and we show that the model lacks a finite-
temperature thermodynamic phase transition. In what follows,
we work with free boundary conditions (h = 0). The parti-
tion function (omitting one layer of ferromagnetic bonds in
the wires at the outputs of the whole circuit) is given by

Z 0
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` . (2)

This expression can be computed via transfer matrices, if we
properly slice the lattice in a sequence of layers. These layers
contain a single gate g, as we depict in Fig. 1. An L-bit multi-
plier can be thus sliced into 2L2 layers, one for each gate. The
layer has two boundaries, which enclose the gate g. The trans-

fer matrix acts non-trivially only for the spins on the links at-
tached to the gate. Specifically, the layer functions as a trans-
fer matrix between the spins �out

` , ` 2 win
(g) and the spins

�out
`0 , `

0 2 wout
(g). Explicitly, denoting {`
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5

} =

win
(g) and {`0
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(3)

For all other spins not attached to links in win
(g) [ wout

(g),
the transfer matrix acts trivially; we denote the spins on this
trivial line by �̄(g). One can then write a transfer operator

Tg = tg ⌦ 11�̄(g).

The partition function for open boundary conditions can be
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as follows from the non-trivial part tg of the transfer operator
in Eq. (3). (The factor of 31 = 2

5�1 accounts for all the con-
figurations that pay energy for violating the truth table.) The
partition function Z 0 is thus given by Z 0

= �Ngates h⌃|⌃i =
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5L. Recall that we omitted the 5L ferromagnetic
bonds at the outputs of the circuit; if we do the same at the
inputs, we finally arrive at the partition function
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(The reason to omit these bonds is that at the input and output
boundaries one does not really need to include twin spins as
there is not two but one gate connected to those bits.)

A few comments are in order. First, notice that it follows
from the partition function that there is no singularity in � and
hence no thermodynamic transition in this system as func-
tion of temperature. Second, this result holds for any � or
J . In particular, one could consider separately the following
two limits: one where the gates are always satisfied but in-
puts/outputs from neighboring gates may differ (� ! 1, J
finite); or one where the twin spins are locked, correspond-
ing to effectively a single spin or bit in each wire, but the
gates may have mistakes that cost energy (finite �, J ! 1).
Henceforth we shall focus on the limit � ! 1 for simplicity.

The partition function yields the total thermal energy per
link (there are 10L2 � 5L of them):

�E
thermal

(�) = � tanh(�J)
2

. (8)

For convenience for the annealing studies below, we shift the
ground state energy to 0 via E

thermal

! E
thermal

+ 1/2, and
set J = 1/2, so at low temperatures

E
thermal

(T ) ⇡ T exp(�2/T ) . (9)

IV. THERMAL ANNEALING

In this section we study the dynamics of the spin system
with free boundaries using classical thermal annealing. We

FIG. 3. Annealing energy E⌧ (T ) (red) for different ⌧ and equilib-
rium thermodynamic energy (black) for L = 128 circuit. As the
annealing time ⌧ increases from 210 to 223, the annealing energy
approachs the thermodynamic value.

start from a random initial spin configuration and lower the
bath temperature used in the Metropolis algorithm, starting
from a temperature T = 1 and ending at T = 0, with the
following protocol of duration ⌧ :

T (t) = 1� t/⌧ . (10)

We define E⌧ (T ) as the value of the energy when the time-
dependent temperature T (t) reaches a given value T . [In
the limit of infinitely slow annealing, i.e. ⌧ ! 1, one has
E1(T ) = E

thermal

(T ).]
Fig. 3 shows E⌧ (T ) for the L = 128 multiplier and differ-

ent values of ⌧ . The solid black line corresponds to the equi-
librium result in Eq. (9). Red lines show the numerical results
for E⌧ (T ) for values of ⌧ in the range from 2

10 to 2

23. No-
tice that E⌧ (T ) monotonously approaches its thermodynamic
equilibrium E

thermal

(T ) as ⌧ increases.
We now proceed to extract the dependence of the relaxation

time on temperature. As shown in Fig. 3, the system is unable
to reach its ground state for finite annealing times, falling out
of equilibrium. The minimum energy E⌧ (0) reached at the
end of the protocol for a given ⌧ can be matched to the ther-
modynamic value of E

thermal

(T ) for some T > 0; we define
⌧(T ) as the time scale needed to bring E⌧ (0) = E

thermal

(T ).
We use finite-size scaling to extract the L ! 1 asymptotic

value of the zero-temperature excess energy E⌧ (0). Inset of
Fig. 4 shows E⌧ (0) versus 1/L for ⌧ = 2

20, which follows a
straight line for the largest 8 system sizes. We use the extrap-
olated values for L ! 1 to obtain the scaling of the excess
energy versus ⌧ , shown in Fig. 4. Fig. 4 shows strong evi-
dence for a double exponential dependence of ⌧ on inverse
temperature. The fitting in Fig. 4 reveals a scaling relation
⌧ = exp(E⌧ (0)

�↵
) with 1/↵ = 2.17 ⇡ 2, which translates

to

⌧ ⇠ exp [exp(2↵/T )] (11)
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The function T g is the negation of the function Tg that en-
codes the truth table of gate g: if the input and output spins
satisfy the gate, Tg = 1 (T g = 0), and if they do not, Tg = 0

(T g = 1). H
gates

penalizes configurations (i.e. cost energy
�) if the input and output bits (or their spin equivalents) vi-
olate the truth table of the gate. The neighbor-gate compat-
ibility is implemented through H

links

, containing ferromag-
netic terms of strength J > 0 that enforce alignment between
connected inputs and outputs of neighboring gates (sharing a
link). Finally, H

boundary

describes local bias fields hi that
fix the states of a subset of spins with indices ` 2 L@ when
h ! 1. These biases are applied at the boundaries so as to
fix either the factors to be multiplied or the product to be fac-
torized, which brings us to an important point on which we
expand below.

By fixing S = 0, the bits of a and b, and ancillary inputs
c = 0 and outputs c0 = 0 using external fields hi in Eq. (1), the
model performs the multiplication S0

= a ⇥ b upon reaching
the minimum energy state. Alternatively, factorization of the
2L-bit integer S0 is implemented by appropriate selection of

external fields hi that fix the bits of S0 and c = c0 = 0, while
leaving the spins belonging to a and b free. In the case of
multiplication, the ground state is uniquely determined by the
boundary, since there is only one product S0 for given fixed
factors a and b. On the other hand, depending on the number
S0 to be factorized, there may be many solutions. For a semi-
prime 2L-bit number that is the product of two L-bit prime
numbers, there are two solutions (differing by where the num-
bers a and b settle along the boundaries, since a⇥ b = b⇥ a).

Yet another choice of boundary condition is to simply leave
all spins free at the boundary. We shall concentrate on this
case, for which we prove in Sec. III that no thermodynamic
phase transition occurs down to zero temperature. In spite
of the absence of any thermal phase transition, we show in
Sec. IV that thermal annealing to the ground state is extremely
slow – doubly exponential in inverse temperature – providing
an example of dynamical freezing without disorder or thermo-
dynamic transitions. (We note that the ultra-slow relaxation
encountered in the bulk of the system makes thermal anneal-
ing a poor method for tackling multiplication or factoring, as
we also observed in our simulations.)

III. THERMODYNAMICS

In this Section, we derive the exact expression for the parti-
tion function of the model defined in Sec. II using the transfer
matrix method, and we show that the model lacks a finite-
temperature thermodynamic phase transition. In what follows,
we work with free boundary conditions (h = 0). The parti-
tion function (omitting one layer of ferromagnetic bonds in
the wires at the outputs of the whole circuit) is given by
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This expression can be computed via transfer matrices, if we
properly slice the lattice in a sequence of layers. These layers
contain a single gate g, as we depict in Fig. 1. An L-bit multi-
plier can be thus sliced into 2L2 layers, one for each gate. The
layer has two boundaries, which enclose the gate g. The trans-
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For all other spins not attached to links in win
(g) [ wout

(g),
the transfer matrix acts trivially; we denote the spins on this
trivial line by �̄(g). One can then write a transfer operator

Tg = tg ⌦ 11�̄(g).

The partition function for open boundary conditions can be
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expressed as
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where the state
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X
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corresponds to the sum over all possible configurations on the
boundary (given open boundary conditions). The state |⌃i is
an eigenstate of Tg with eigenvalue � given by
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as follows from the non-trivial part tg of the transfer operator
in Eq. (3). (The factor of 31 = 2

5�1 accounts for all the con-
figurations that pay energy for violating the truth table.) The
partition function Z 0 is thus given by Z 0

= �Ngates h⌃|⌃i =
�Ngates

2

5L. Recall that we omitted the 5L ferromagnetic
bonds at the outputs of the circuit; if we do the same at the
inputs, we finally arrive at the partition function

Z =
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(2 cosh�J)
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(The reason to omit these bonds is that at the input and output
boundaries one does not really need to include twin spins as
there is not two but one gate connected to those bits.)

A few comments are in order. First, notice that it follows
from the partition function that there is no singularity in � and
hence no thermodynamic transition in this system as func-
tion of temperature. Second, this result holds for any � or
J . In particular, one could consider separately the following
two limits: one where the gates are always satisfied but in-
puts/outputs from neighboring gates may differ (� ! 1, J
finite); or one where the twin spins are locked, correspond-
ing to effectively a single spin or bit in each wire, but the
gates may have mistakes that cost energy (finite �, J ! 1).
Henceforth we shall focus on the limit � ! 1 for simplicity.

The partition function yields the total thermal energy per
link (there are 10L2 � 5L of them):

�E
thermal

(�) = � tanh(�J)
2

. (8)

For convenience for the annealing studies below, we shift the
ground state energy to 0 via E

thermal

! E
thermal

+ 1/2, and
set J = 1/2, so at low temperatures

E
thermal

(T ) ⇡ T exp(�2/T ) . (9)

IV. THERMAL ANNEALING

In this section we study the dynamics of the spin system
with free boundaries using classical thermal annealing. We

FIG. 3. Annealing energy E⌧ (T ) (red) for different ⌧ and equilib-
rium thermodynamic energy (black) for L = 128 circuit. As the
annealing time ⌧ increases from 210 to 223, the annealing energy
approachs the thermodynamic value.

start from a random initial spin configuration and lower the
bath temperature used in the Metropolis algorithm, starting
from a temperature T = 1 and ending at T = 0, with the
following protocol of duration ⌧ :

T (t) = 1� t/⌧ . (10)

We define E⌧ (T ) as the value of the energy when the time-
dependent temperature T (t) reaches a given value T . [In
the limit of infinitely slow annealing, i.e. ⌧ ! 1, one has
E1(T ) = E

thermal

(T ).]
Fig. 3 shows E⌧ (T ) for the L = 128 multiplier and differ-

ent values of ⌧ . The solid black line corresponds to the equi-
librium result in Eq. (9). Red lines show the numerical results
for E⌧ (T ) for values of ⌧ in the range from 2

10 to 2

23. No-
tice that E⌧ (T ) monotonously approaches its thermodynamic
equilibrium E

thermal

(T ) as ⌧ increases.
We now proceed to extract the dependence of the relaxation

time on temperature. As shown in Fig. 3, the system is unable
to reach its ground state for finite annealing times, falling out
of equilibrium. The minimum energy E⌧ (0) reached at the
end of the protocol for a given ⌧ can be matched to the ther-
modynamic value of E

thermal

(T ) for some T > 0; we define
⌧(T ) as the time scale needed to bring E⌧ (0) = E

thermal

(T ).
We use finite-size scaling to extract the L ! 1 asymptotic

value of the zero-temperature excess energy E⌧ (0). Inset of
Fig. 4 shows E⌧ (0) versus 1/L for ⌧ = 2

20, which follows a
straight line for the largest 8 system sizes. We use the extrap-
olated values for L ! 1 to obtain the scaling of the excess
energy versus ⌧ , shown in Fig. 4. Fig. 4 shows strong evi-
dence for a double exponential dependence of ⌧ on inverse
temperature. The fitting in Fig. 4 reveals a scaling relation
⌧ = exp(E⌧ (0)

�↵
) with 1/↵ = 2.17 ⇡ 2, which translates

to

⌧ ⇠ exp [exp(2↵/T )] (11)
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as follows from the non-trivial part tg of the transfer operator
in Eq. (3). (The factor of 31 = 2

5�1 accounts for all the con-
figurations that pay energy for violating the truth table.) The
partition function Z 0 is thus given by Z 0

= �Ngates h⌃|⌃i =
�Ngates

2

5L. Recall that we omitted the 5L ferromagnetic
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(The reason to omit these bonds is that at the input and output
boundaries one does not really need to include twin spins as
there is not two but one gate connected to those bits.)

A few comments are in order. First, notice that it follows
from the partition function that there is no singularity in � and
hence no thermodynamic transition in this system as func-
tion of temperature. Second, this result holds for any � or
J . In particular, one could consider separately the following
two limits: one where the gates are always satisfied but in-
puts/outputs from neighboring gates may differ (� ! 1, J
finite); or one where the twin spins are locked, correspond-
ing to effectively a single spin or bit in each wire, but the
gates may have mistakes that cost energy (finite �, J ! 1).
Henceforth we shall focus on the limit � ! 1 for simplicity.

The partition function yields the total thermal energy per
link (there are 10L2 � 5L of them):

�E
thermal

(�) = � tanh(�J)
2

. (8)

For convenience for the annealing studies below, we shift the
ground state energy to 0 via E

thermal

! E
thermal

+ 1/2, and
set J = 1/2, so at low temperatures

E
thermal

(T ) ⇡ T exp(�2/T ) . (9)

IV. THERMAL ANNEALING

In this section we study the dynamics of the spin system
with free boundaries using classical thermal annealing. We

FIG. 3. Annealing energy E⌧ (T ) (red) for different ⌧ and equilib-
rium thermodynamic energy (black) for L = 128 circuit. As the
annealing time ⌧ increases from 210 to 223, the annealing energy
approachs the thermodynamic value.

start from a random initial spin configuration and lower the
bath temperature used in the Metropolis algorithm, starting
from a temperature T = 1 and ending at T = 0, with the
following protocol of duration ⌧ :

T (t) = 1� t/⌧ . (10)

We define E⌧ (T ) as the value of the energy when the time-
dependent temperature T (t) reaches a given value T . [In
the limit of infinitely slow annealing, i.e. ⌧ ! 1, one has
E1(T ) = E

thermal

(T ).]
Fig. 3 shows E⌧ (T ) for the L = 128 multiplier and differ-

ent values of ⌧ . The solid black line corresponds to the equi-
librium result in Eq. (9). Red lines show the numerical results
for E⌧ (T ) for values of ⌧ in the range from 2

10 to 2

23. No-
tice that E⌧ (T ) monotonously approaches its thermodynamic
equilibrium E

thermal

(T ) as ⌧ increases.
We now proceed to extract the dependence of the relaxation

time on temperature. As shown in Fig. 3, the system is unable
to reach its ground state for finite annealing times, falling out
of equilibrium. The minimum energy E⌧ (0) reached at the
end of the protocol for a given ⌧ can be matched to the ther-
modynamic value of E

thermal

(T ) for some T > 0; we define
⌧(T ) as the time scale needed to bring E⌧ (0) = E

thermal

(T ).
We use finite-size scaling to extract the L ! 1 asymptotic

value of the zero-temperature excess energy E⌧ (0). Inset of
Fig. 4 shows E⌧ (0) versus 1/L for ⌧ = 2

20, which follows a
straight line for the largest 8 system sizes. We use the extrap-
olated values for L ! 1 to obtain the scaling of the excess
energy versus ⌧ , shown in Fig. 4. Fig. 4 shows strong evi-
dence for a double exponential dependence of ⌧ on inverse
temperature. The fitting in Fig. 4 reveals a scaling relation
⌧ = exp(E⌧ (0)
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) with 1/↵ = 2.17 ⇡ 2, which translates

to
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The function T g is the negation of the function Tg that en-
codes the truth table of gate g: if the input and output spins
satisfy the gate, Tg = 1 (T g = 0), and if they do not, Tg = 0

(T g = 1). H
gates

penalizes configurations (i.e. cost energy
�) if the input and output bits (or their spin equivalents) vi-
olate the truth table of the gate. The neighbor-gate compat-
ibility is implemented through H

links

, containing ferromag-
netic terms of strength J > 0 that enforce alignment between
connected inputs and outputs of neighboring gates (sharing a
link). Finally, H

boundary

describes local bias fields hi that
fix the states of a subset of spins with indices ` 2 L@ when
h ! 1. These biases are applied at the boundaries so as to
fix either the factors to be multiplied or the product to be fac-
torized, which brings us to an important point on which we
expand below.

By fixing S = 0, the bits of a and b, and ancillary inputs
c = 0 and outputs c0 = 0 using external fields hi in Eq. (1), the
model performs the multiplication S0

= a ⇥ b upon reaching
the minimum energy state. Alternatively, factorization of the
2L-bit integer S0 is implemented by appropriate selection of

external fields hi that fix the bits of S0 and c = c0 = 0, while
leaving the spins belonging to a and b free. In the case of
multiplication, the ground state is uniquely determined by the
boundary, since there is only one product S0 for given fixed
factors a and b. On the other hand, depending on the number
S0 to be factorized, there may be many solutions. For a semi-
prime 2L-bit number that is the product of two L-bit prime
numbers, there are two solutions (differing by where the num-
bers a and b settle along the boundaries, since a⇥ b = b⇥ a).

Yet another choice of boundary condition is to simply leave
all spins free at the boundary. We shall concentrate on this
case, for which we prove in Sec. III that no thermodynamic
phase transition occurs down to zero temperature. In spite
of the absence of any thermal phase transition, we show in
Sec. IV that thermal annealing to the ground state is extremely
slow – doubly exponential in inverse temperature – providing
an example of dynamical freezing without disorder or thermo-
dynamic transitions. (We note that the ultra-slow relaxation
encountered in the bulk of the system makes thermal anneal-
ing a poor method for tackling multiplication or factoring, as
we also observed in our simulations.)

III. THERMODYNAMICS

In this Section, we derive the exact expression for the parti-
tion function of the model defined in Sec. II using the transfer
matrix method, and we show that the model lacks a finite-
temperature thermodynamic phase transition. In what follows,
we work with free boundary conditions (h = 0). The parti-
tion function (omitting one layer of ferromagnetic bonds in
the wires at the outputs of the whole circuit) is given by
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This expression can be computed via transfer matrices, if we
properly slice the lattice in a sequence of layers. These layers
contain a single gate g, as we depict in Fig. 1. An L-bit multi-
plier can be thus sliced into 2L2 layers, one for each gate. The
layer has two boundaries, which enclose the gate g. The trans-
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For all other spins not attached to links in win
(g) [ wout

(g),
the transfer matrix acts trivially; we denote the spins on this
trivial line by �̄(g). One can then write a transfer operator

Tg = tg ⌦ 11�̄(g).

The partition function for open boundary conditions can be

paramagnet-like:
no phase transition



Thermodynamics:
absence of a phase transition

𝐽
𝑞 𝑞′

transfer matrix

4

expressed as

h⌃|

0

@
NgatesY

g=1

Tg

1

A |⌃i , (4)

where the state

|⌃i =
X

{�}5L

|{�}
5Li (5)

corresponds to the sum over all possible configurations on the
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as follows from the non-trivial part tg of the transfer operator
in Eq. (3). (The factor of 31 = 2

5�1 accounts for all the con-
figurations that pay energy for violating the truth table.) The
partition function Z 0 is thus given by Z 0

= �Ngates h⌃|⌃i =
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2

5L. Recall that we omitted the 5L ferromagnetic
bonds at the outputs of the circuit; if we do the same at the
inputs, we finally arrive at the partition function
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(The reason to omit these bonds is that at the input and output
boundaries one does not really need to include twin spins as
there is not two but one gate connected to those bits.)

A few comments are in order. First, notice that it follows
from the partition function that there is no singularity in � and
hence no thermodynamic transition in this system as func-
tion of temperature. Second, this result holds for any � or
J . In particular, one could consider separately the following
two limits: one where the gates are always satisfied but in-
puts/outputs from neighboring gates may differ (� ! 1, J
finite); or one where the twin spins are locked, correspond-
ing to effectively a single spin or bit in each wire, but the
gates may have mistakes that cost energy (finite �, J ! 1).
Henceforth we shall focus on the limit � ! 1 for simplicity.

The partition function yields the total thermal energy per
link (there are 10L2 � 5L of them):

�E
thermal

(�) = � tanh(�J)
2

. (8)

For convenience for the annealing studies below, we shift the
ground state energy to 0 via E

thermal

! E
thermal

+ 1/2, and
set J = 1/2, so at low temperatures

E
thermal

(T ) ⇡ T exp(�2/T ) . (9)

IV. THERMAL ANNEALING

In this section we study the dynamics of the spin system
with free boundaries using classical thermal annealing. We

FIG. 3. Annealing energy E⌧ (T ) (red) for different ⌧ and equilib-
rium thermodynamic energy (black) for L = 128 circuit. As the
annealing time ⌧ increases from 210 to 223, the annealing energy
approachs the thermodynamic value.

start from a random initial spin configuration and lower the
bath temperature used in the Metropolis algorithm, starting
from a temperature T = 1 and ending at T = 0, with the
following protocol of duration ⌧ :

T (t) = 1� t/⌧ . (10)

We define E⌧ (T ) as the value of the energy when the time-
dependent temperature T (t) reaches a given value T . [In
the limit of infinitely slow annealing, i.e. ⌧ ! 1, one has
E1(T ) = E

thermal

(T ).]
Fig. 3 shows E⌧ (T ) for the L = 128 multiplier and differ-

ent values of ⌧ . The solid black line corresponds to the equi-
librium result in Eq. (9). Red lines show the numerical results
for E⌧ (T ) for values of ⌧ in the range from 2

10 to 2

23. No-
tice that E⌧ (T ) monotonously approaches its thermodynamic
equilibrium E

thermal

(T ) as ⌧ increases.
We now proceed to extract the dependence of the relaxation

time on temperature. As shown in Fig. 3, the system is unable
to reach its ground state for finite annealing times, falling out
of equilibrium. The minimum energy E⌧ (0) reached at the
end of the protocol for a given ⌧ can be matched to the ther-
modynamic value of E

thermal

(T ) for some T > 0; we define
⌧(T ) as the time scale needed to bring E⌧ (0) = E

thermal

(T ).
We use finite-size scaling to extract the L ! 1 asymptotic

value of the zero-temperature excess energy E⌧ (0). Inset of
Fig. 4 shows E⌧ (0) versus 1/L for ⌧ = 2

20, which follows a
straight line for the largest 8 system sizes. We use the extrap-
olated values for L ! 1 to obtain the scaling of the excess
energy versus ⌧ , shown in Fig. 4. Fig. 4 shows strong evi-
dence for a double exponential dependence of ⌧ on inverse
temperature. The fitting in Fig. 4 reveals a scaling relation
⌧ = exp(E⌧ (0)

�↵
) with 1/↵ = 2.17 ⇡ 2, which translates

to

⌧ ⇠ exp [exp(2↵/T )] (11)
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H
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NgatesX

g=1

T g[�
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(g)] , (1b)

H
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= � J
X

`

�in
` �out

` , (1c)

H
boundary

= � h
X

`2L@

�
�in
` + �out

`

�
. (1d)

The function T g is the negation of the function Tg that en-
codes the truth table of gate g: if the input and output spins
satisfy the gate, Tg = 1 (T g = 0), and if they do not, Tg = 0

(T g = 1). H
gates

penalizes configurations (i.e. cost energy
�) if the input and output bits (or their spin equivalents) vi-
olate the truth table of the gate. The neighbor-gate compat-
ibility is implemented through H

links

, containing ferromag-
netic terms of strength J > 0 that enforce alignment between
connected inputs and outputs of neighboring gates (sharing a
link). Finally, H

boundary

describes local bias fields hi that
fix the states of a subset of spins with indices ` 2 L@ when
h ! 1. These biases are applied at the boundaries so as to
fix either the factors to be multiplied or the product to be fac-
torized, which brings us to an important point on which we
expand below.

By fixing S = 0, the bits of a and b, and ancillary inputs
c = 0 and outputs c0 = 0 using external fields hi in Eq. (1), the
model performs the multiplication S0

= a ⇥ b upon reaching
the minimum energy state. Alternatively, factorization of the
2L-bit integer S0 is implemented by appropriate selection of

external fields hi that fix the bits of S0 and c = c0 = 0, while
leaving the spins belonging to a and b free. In the case of
multiplication, the ground state is uniquely determined by the
boundary, since there is only one product S0 for given fixed
factors a and b. On the other hand, depending on the number
S0 to be factorized, there may be many solutions. For a semi-
prime 2L-bit number that is the product of two L-bit prime
numbers, there are two solutions (differing by where the num-
bers a and b settle along the boundaries, since a⇥ b = b⇥ a).

Yet another choice of boundary condition is to simply leave
all spins free at the boundary. We shall concentrate on this
case, for which we prove in Sec. III that no thermodynamic
phase transition occurs down to zero temperature. In spite
of the absence of any thermal phase transition, we show in
Sec. IV that thermal annealing to the ground state is extremely
slow – doubly exponential in inverse temperature – providing
an example of dynamical freezing without disorder or thermo-
dynamic transitions. (We note that the ultra-slow relaxation
encountered in the bulk of the system makes thermal anneal-
ing a poor method for tackling multiplication or factoring, as
we also observed in our simulations.)

III. THERMODYNAMICS

In this Section, we derive the exact expression for the parti-
tion function of the model defined in Sec. II using the transfer
matrix method, and we show that the model lacks a finite-
temperature thermodynamic phase transition. In what follows,
we work with free boundary conditions (h = 0). The parti-
tion function (omitting one layer of ferromagnetic bonds in
the wires at the outputs of the whole circuit) is given by

Z 0
=

X

{�in
` },{�

out
` }

NgatesY

g=1

e���T g [�
in
(g),�out

(g)] e�J
P

`2win(g) �
in
` �out

` . (2)

This expression can be computed via transfer matrices, if we
properly slice the lattice in a sequence of layers. These layers
contain a single gate g, as we depict in Fig. 1. An L-bit multi-
plier can be thus sliced into 2L2 layers, one for each gate. The
layer has two boundaries, which enclose the gate g. The trans-

fer matrix acts non-trivially only for the spins on the links at-
tached to the gate. Specifically, the layer functions as a trans-
fer matrix between the spins �out

` , ` 2 win
(g) and the spins

�out
`0 , `

0 2 wout
(g). Explicitly, denoting {`

1

, `
2

, `
3

, `
4

, `
5

} =

win
(g) and {`0

1

, `0
2

, `0
3

, `0
4

, `0
5

} = wout
(g), we can write
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X
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`i

,�out
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1
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(3)

For all other spins not attached to links in win
(g) [ wout

(g),
the transfer matrix acts trivially; we denote the spins on this
trivial line by �̄(g). One can then write a transfer operator

Tg = tg ⌦ 11�̄(g).

The partition function for open boundary conditions can be

paramagnet-like:
no phase transition

ground state degeneracy
“holographic”

h⌃|⌃i = 25L



Thermodynamics:
absence of a phase transition

⇠T ⇠ eK/2T

Temperature needed is not very low! Only logarithmic in the size of the system.

T ∼ K/ln L

𝐽
𝑞 𝑞′

L



Thermodynamics:
absence of a phase transition

⇠T ⇠ eK/2T

Temperature needed is not very low! Only logarithmic in the size of the system.

T ∼ K/ln L

𝐽
𝑞 𝑞′

L

ξT



Thermodynamics:
absence of a phase transition

⇠T ⇠ eK/2T

Temperature needed is not very low! Only logarithmic in the size of the system.

T ∼ K/ln L

𝐽
𝑞 𝑞′

L

ξT

`T (⌧)



Dynamics is what matters!

How long does it take to thermalize?



Increasing 𝜏

Thermal annealing

T(t) = J (1 − t/τ)



𝜏 = 223

𝜏 = 210

Thermal annealing



𝜏 = 223

𝜏 = 210

Thermal annealing

τ ∼ τo eeJ/2T /T



𝐽
𝑞 𝑞′

Red shows the distribution when flipping spin a, blue for spins b and c, and green for spin S 

Thermal annealing

error in
bit type

a

b or c

S



5

Figure 3. Annealing results (red) at di↵erent ⌧ and thermal
dynamical energy (black) for N = 128 circuits. As anneal-
ing time ⌧ increased from 210 to 223, the annealing energy is
approaching thermal dynamic value.

Figure 4. Relation between annealed energy at T = 0 and
annealing time ⌧. The linear relation between ln(E(0)) and
ln(1/log2(⌧)) infers a scaling relation ⌧ = exp(E(0)�↵). Inset:
example of finite size scaling method at ⌧ = 220.

Here we propose a way to relax the defect with min-
imum possible energy barrier. Consider a more realistic
condition that there’re several defects distributed ran-
domly among the lattice and defects are isolated from
each other at enough low temperature, as illustrated in
mid panel of Fig.5 . Their average distance is equal to
correlation length ⇠ ⇠ exp(1/T ). And average distance
between nearest defects and boundary is also at the or-
der of ⇠. As shown in the cartoon pictures, to get rid
of the defect in the calculation circuit, one need to flip
gates around the defect into states of global ground state
A. And this will result in more defects as state A and B

are generally not matched at other locations, which will

State A State B

𝜉

𝜉

A BA BA B

Figure 5. Top panel: Illustration of state with one defect in
2D vertex model. When there’s only one defect in the mid
of lattice ( denoted by the red cross symbol), left circuit is in
ground state A and right half is in ground state B. The defect
in the middle can not be relaxed or moved around without
creating extra defects. Mid panel: a general with several
defects isolated from each other at low temperature. Average
distance between defects is correlation length ⇠ and distance
between boundary and defect is also ⇠. Bottom panels from
right to left: process on how a defect near boundary is relaxed.
An energy barrier ⇠ ⇠ is required to flip the lattice into state
A and relax the defect.

form a defects line. By flipping gates around line and
push the defect line forward , defects can finally reach
boundary and be relaxed. The length of defect line is in
the order of ⇠ , which is the distance between original de-
fect and boundary. With energy barrier, relaxation time
can be expressed as ⌧ ⇠ exp(E

barrier

/T ) ⇠ exp(⇠/T ) =
exp(exp(1/T )/T ) ⇠ exp(exp(1/T )). This energy bar-
rier picture explains well our doubly exponential slowing
down and E

barrier

⇠ ⇠ agrees well with our numerical
result 2↵ ⇡ 1.

Another way to understand the slow relaxation is from
relaxation equation. The relaxation equation can be
written as :

dE

dt

= ��(E)(E � E

thermal

) = �e

�E

�↵

(E � E

thermal

)

(17)

where relaxation rate �(E) = e

�E

�↵

, which assumes
temperature is not a↵ecting relaxation rate. We can

Thermal annealing

τ ∼ τo exp(EB/T )

EB ∝ ξ ∼ exp(J/2T )
⇒

τ ∼ τo eeJ/2T /T
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Figure 14. Procedure for embedding a 4 ⇥ 4 tile lattice into the Chimera graph. (a) Left: a generic tile lattice rotated by
45�. Spins are put on the boundary of each tile. The lattice can be further divided into two sublattices, depicted by dark
and light grey respectively; right: embedding of the tile lattice into the Chimera graph. The “grout couplings” are indicated
by red links. (b) Embedding of each gate into the unit cells of the Chimera graph. (i) Left: a K4,4 unit cell of the Chimera
graph; middle: in order to couple qubits in the same column, we slave the qubits to their neighbors in the other column using
additional ferromagnetic couplings indicated by red links; right: e↵ectively we are left with four qubits that are fully connected.
For simplicity, we hereafter denote the e↵ective couplings between spins in the same column by a single green link. However,
one should keep in mind that they are obtained by slaving the spins to the opposite column via large ferromagnetic couplings.
(ii) The four qubits in the rotated square tile are labeled by their locations on the tile: N (North), S (South), W (West) and E
(East). Tiles corresponding to di↵erent sublattices must be embedded di↵erently due to the special connectivity of the Chimera
graph. (iii) Embedding of the TOFFOLI gate consisting of two square tiles into two unit cells. (a, b, c, d) corresponds to the
input and output bits of the gate, and S is the ancilla bit. In the unit cell, ferromagnetic couplings that copy spins are indicated
by purple links, and couplings required in Hamiltonian (3) are indicate by black links.

phase transition, independent of the circuit or bound- ary conditions. Thus the process and the complexity
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Figure 9. (Color online) Five types of vertices used for the
vertex model representation of reversible classical computa-
tions. The input and output bits are denoted by blue squares
on the links associated with a given vertex.

total configurations are allowed. For all five types of ver-
tices, one can write local one- and two-spin interaction
terms, such that the allowed configurations are given by
the ground-state manifold of the Hamiltonian comprised
of all these terms [8]. The allowed configurations are then
separated from the excited states by a gap set by the en-
ergy scale of the couplings. In the large-couplings limit,
interactions can be equivalently thought of as constraints
and one therefore needs only to consider the subspace
where local vertex constraints are always satisfied.

Using the five types of vertices introduced above, one
can map an arbitrary classical computational circuit onto
a vertex model on a tilted square lattice, as shown in
Fig. 10.

Figure 10. (Color online) Vertex model on a tilted square lat-
tice encoding a generic classical computation. The left and
right boundaries stores the input and output states, and pe-
riodic boundary condition is taken along the transverse direc-
tion.

Bits at the left and right boundaries store the input
and output respectively, and the horizontal direction cor-
responds to the computational “time” direction. The
boundary condition along the transverse direction is cho-

sen to be periodic. Spin degrees of freedom representing
input and output bits associated with each vertex are
placed on the links. This model can be shown to display
no thermodynamic phase transition irrespective of the
circuit realizations via a straightforward transfer matrix
calculation [8].

When either only the input or only the output bound-
ary bits are fully determined a priori, the physical system
functions as a regular circuit: the solution can be ob-
tained by passing the boundary state through the next
column of gates, obtaining the output, then passing this
output on to the next column of gates, repeating the pro-
cedure until the other boundary is reached. This mode of
solution, which we shall call direct computation, is trivial
and its computational cost scales linearly with the area
of the system.

On the other hand, by fixing only a subset of the left
and right boundaries, a class of nontrivial problems can
be encoded in the vertex model. For example, one can
cast the integer factorization problem on a reversible mul-
tiplication circuit precisely in this way [8, 35]. In these
cases, the boundary state cannot be straightforwardly
propagated from the boundaries throughout the entire
bulk, as the input or output of one or more gates is at
most only partly fixed, and therefore direct computation
unavoidably halts. Without any protocol of communi-
cation between the two partially fixed boundaries, one is
left with trial-and-error enumeration of all boundary con-
figurations, whose number grows exponentially with the
number of unfixed bits at the boundaries. Even though
it is sometimes possible to exploit special (nonuniversal)
features of specific subsets of problems in order to de-
vise e�cient strategies of solution (e.g., factorization with
sieve algorithms), general schemes that perform favor-
ably in solving the typical instances in the encompassing
class are important, both for highlighting the underlying
universal patterns and as launchpads towards customized
solvers for particular subsets of problems. The algorithm
introduced in this work is of the latter general kind.

B. Tensor network representation

We shall now construct a tensor network representa-
tion of the vertex model, such that the full contraction
of the tensors yields the total number of solutions satisfy-
ing the boundary conditions. In the statistical mechan-
ics language, this is the partition function of the vertex
model at zero temperature, which essentially counts the
ground state degeneracy.
Bulk tensors. We define a rank-4 tensor associated

with each vertex in the bulk, Tijkl, as shown in Fig. 11a.
The tensor components are initialized to satisfy the truth
table of the vertex constraint, meaning that Tijkl = 1 if
(ij) ! (kl) satisfies the vertex constraint, and Tijkl = 0
otherwise. Here the indices should be understood as in-
tegers labeling the spin (bit) states on each bond. Notice
that the indices i, l correspond to double bonds on the

Realizing the vertex model in the 
chimera architecture

w/ Zhi-Cheng Yang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein
Nat. Comm. (2017)
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