Exactly Solvable Minimal Model of Maximal Quantum Chaos

Tomaž Prosen

Faculty of mathematics and physics, University of Ljubljana, Slovenia

KITP, August 30, 2018
B Bertini, P Kos, TP, arXiv:1805.00931
(1) Spectral correlations in quantum systems and The Quantum Chaos Conjecture
(3) Self-dual Kicked Ising model:
a minimal solvable model for maximal many body quantum chaos (No small parameter, such as \hbar or inverse local Hilbert space dimension!)

- Sketch of the derivation/proof

Consider hamiltonian H of a quantum system with finite volume L (length, in $1 D)$ and let $\left\{E_{n}\right\}_{n=1, \ldots, \mathcal{N}=2^{\iota}}$ be its spectrum.

Consider hamiltonian H of a quantum system with finite volume L (length, in $1 D)$ and let $\left\{E_{n}\right\}_{n=1, \ldots, \mathcal{N}=2^{\llcorner }}$be its spectrum.

Analogous object in periodically driven systems

$$
H(t)=H(t+T)
$$

is the set of quasi-energies $\left\{\varphi_{n} \in[0,2 \pi]\right\}_{n=1, \ldots, \mathcal{N}}$ such that $\left\{e^{-i \varphi_{n}}\right\}$ is the spectrum of the Floquet operator

$$
U=T \exp \left(-i \int_{0}^{T} \mathrm{~d} s H(s)\right) .
$$

The spectrum as a gas in one dimension
Spectral density (1-point function):

$$
\rho(\varphi)=\frac{2 \pi}{\mathcal{N}} \sum_{n} \delta\left(\varphi-\varphi_{n}\right)
$$

Spectral pair correlation function (2-point function):

$$
r(\vartheta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \varphi \rho\left(\varphi+\frac{1}{2} \vartheta\right) \rho\left(\varphi-\frac{1}{2} \vartheta\right)-1
$$

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

$$
\begin{aligned}
K(t) & =\frac{\mathcal{N}^{2}}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \vartheta r(\vartheta) e^{i t \vartheta}=\sum_{m, n} e^{i\left(\varphi_{m}-\varphi_{n}\right)}-\mathcal{N}^{2} \delta_{t, 0} \\
& =\left|\operatorname{tr} U^{t}\right|^{2}-\mathcal{N}^{2} \delta_{t, 0}
\end{aligned}
$$

The spectrum as a gas in one dimension
Spectral density (1-point function):

$$
\rho(\varphi)=\frac{2 \pi}{\mathcal{N}} \sum_{n} \delta\left(\varphi-\varphi_{n}\right)
$$

Spectral pair correlation function (2-point function):

$$
r(\vartheta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \varphi \rho\left(\varphi+\frac{1}{2} \vartheta\right) \rho\left(\varphi-\frac{1}{2} \vartheta\right)-1
$$

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

$$
\begin{aligned}
K(t) & =\frac{\mathcal{N}^{2}}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \vartheta r(\vartheta) e^{i t \vartheta}=\sum_{m, n} e^{i\left(\varphi_{m}-\varphi_{n}\right)}-\mathcal{N}^{2} \delta_{t, 0} \\
& =\left|\operatorname{tr} U^{t}\right|^{2}-\mathcal{N}^{2} \delta_{t, 0}
\end{aligned}
$$

Caveat: SFF is not self-averaging! Consider instead $\bar{K}(t)=\mathbb{E}[K(t)]$.

The Quantum Chaos Conjecture

Casati, Guarnerri, Valz-Gris 1980, Berry 1981, Bohigas, Giannoni, Schmidt 1984
The spectral fluctuations of quantum systems with chaotic and ergodic classical limit are universal and described by Random Matrix Theory (RMT).

The same holds for periodically-driven systems if one considers the statisrtics of quasi-energies instead.

(a)

(b)

Tomaż Prosen

Comparision to RMT spectral form factors

RMT (No time reversal symmetry):

$$
K_{\mathrm{CUE}}(t)=t, \quad t<\mathcal{N} .
$$

RMT (With time teversal symmetry):

$$
K_{\mathrm{COE}}(t)=2 t-\log (1+2 t / \mathcal{N}), \quad t<\mathrm{N} .
$$

Random (uncorrelated, Poissonian) spectrum $\left\{\varphi_{n}\right\}$:

$$
K_{\text {Poisson }} \equiv \mathcal{N}
$$

Real System:

Review: Chen and Ludwig 2017

$$
\mathbb{E}[K(t)]=\mathbb{E}\left[\sum_{m, n} e^{i\left(\varphi_{m}-\varphi_{n}\right)}\right]
$$

Saturation $\bar{K}(t) \sim \mathcal{N}$ beyond Heisenberg time $t>t_{\mathrm{H}}=\mathcal{N}=1 / \Delta \varphi$.

Non-universal (system-specific) behaviour below Ehrenfest/Thouless time $t<t_{\mathrm{T}}$.

To first order, this is captured by the diagonal approximation (Berry 1985)

$$
K(\tau) \sim \sum_{p}^{\tau} \sum_{p^{\prime}}^{\tau} A_{p} \mathrm{e}^{\mathrm{i} S_{p} / \hbar} A_{p^{\prime}}^{*} e^{-\mathrm{i} \mathrm{~S}_{p^{\prime}} / \hbar} \simeq(2) \sum_{p}^{\tau}\left|A_{p}\right|^{2}=(2) t
$$

To first order, this is captured by the diagonal approximation (Berry 1985)

$$
K(\tau) \sim \sum_{p}^{\tau} \sum_{p^{\prime}}^{\tau} A_{p} \mathrm{e}^{\mathrm{i} S_{p} / \hbar} A_{p^{\prime}}^{*} \mathrm{e}^{-\mathrm{i} S_{p^{\prime}} / \hbar} \simeq(2) \sum_{p}^{\tau}\left|A_{p}\right|^{2}=(2) t
$$

To second order, the RMT term is reproduced by considering so-called Sieber-Richter (2001) pairs of orbits

To first order, this is captured by the diagonal approximation (Berry 1985)

$$
K(\tau) \sim \sum_{p}^{\tau} \sum_{p^{\prime}}^{\tau} A_{\rho} \mathrm{e}^{\mathrm{i} S_{\rho} / \hbar} A_{p^{\prime}}^{*} \mathrm{e}^{-\mathrm{i} \mathrm{~S}_{p^{\prime}} / \hbar} \simeq(2) \sum_{p}^{\tau}\left|A_{\rho}\right|^{2}=(2) t
$$

To second order, the RMT term is reproduced by considering so-called Sieber-Richter (2001) pairs of orbits

To all orders, RMT terms is reproduced by considering full combinatorics of self-encountering orbits (Müller et al, 2004)

To first order, this is captured by the diagonal approximation (Berry 1985)

$$
K(\tau) \sim \sum_{p}^{\tau} \sum_{p^{\prime}}^{\tau} A_{p} e^{\mathrm{i} S_{p} / \hbar} A_{p^{\prime}}^{*} e^{-\mathrm{i} S_{p^{\prime}} / \hbar} \simeq(2) \sum_{p}^{\tau}\left|A_{p}\right|^{2}=(2) t
$$

To second order, the RMT term is reproduced by considering so-called Sieber-Richter (2001) pairs of orbits

To all orders, RMT terms is reproduced by considering full combinatorics of self-encountering orbits (Müller et al, 2004)

Rigorous proof only possible for very specific class of models: Fully connected incommensurate quantum graphs [Pluhař and Weidenmüller PRL 2014]

What about QCC for many-body systems at ' $\hbar \sim 1$ '?
(say for interacting spin $1 / 2$ or fermionic systems)

What about QCC for many-body systems at ' $\hbar \sim 1$ '?
(say for interacting spin $1 / 2$ or fermionic systems)

$$
H=\sum_{j=0}^{L-1}\left(-J c_{j}^{\dagger} c_{j+1}-J^{\prime} c_{j}^{\dagger} c_{j+2}+\mathrm{h} . \mathrm{c} .+V n_{j} n_{j+1}+V^{\prime} n_{j} n_{j+2}\right), \quad n_{j}=c_{j}^{\dagger} c_{j} \text {. }
$$

From [Rigol and Santos, 2010]

Detailed numerical study in Kicked Ising Model

From [Pineda and TP, PRE 2007]

Only very recently first analytic results arrived..

Floquet long-ranged (non-integrable/non-mean field) spin 1/2 chains [arXiv:1712.02665]

PHYSICAL REVIEW X 8, 021062 (2018)

Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
Pavel Kos, Marko Ljubotina, and Tomaž Prosen ${ }^{*}$
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
(0) (Received 5 February 2018; revised manuscript received 12 April 2018; published 8 June 2018)

Floqeut local quantum circuits with random unitary gates in the limit of large local Hilbert space dimension $q \rightarrow \infty$
[arXiv:1712.06836,arXiv:1803.03841]
Solution of a minimal model for many-body quantum chaos
Amos Chan, Andrea De Luca and J. T. Chalker
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Dated: December 20, 2017)

Spectral statistics in spatially extended chaotic quantum many-body systems
Amos Chan, Andrea De Luca and J. T. Chalker
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Dated: April 4, 2018)

What about fermionic or spin $1 / 2$ systems with strictly local interactions?
$H_{\mathrm{KI}}[\boldsymbol{h} ; t]=H_{\mathrm{I}}[\boldsymbol{h}]+\delta_{p}(t) H_{\mathrm{K}}, \quad H_{\mathrm{I}}[\boldsymbol{h}] \equiv \sum_{j=1}^{L}\left\{J \sigma_{j}^{z} \sigma_{j+1}^{z}+h_{j} \sigma_{j}^{z}\right\}, \quad H_{\mathrm{K}} \equiv b \sum_{j=1}^{L} \sigma_{j}^{\times}$,
with Floquet propagator

$$
U_{\mathrm{KI}}=e^{-i H_{\mathrm{K}}} e^{-i H_{\mathrm{I}}} .
$$

J, b : homogeneous spin-coupling and transverse field h_{j} position dependent longitudinal field
$H_{\mathrm{KI}}[\boldsymbol{h} ; t]=H_{\mathrm{I}}[\boldsymbol{h}]+\delta_{p}(t) H_{\mathrm{K}}, \quad H_{\mathrm{I}}[\boldsymbol{h}] \equiv \sum_{j=1}^{L}\left\{J \sigma_{j}^{z} \sigma_{j+\boldsymbol{1}}^{z}+h_{j} \sigma_{j}^{z}\right\}, \quad H_{\mathrm{K}} \equiv b \sum_{j=1}^{L} \sigma_{j}^{x}$,
with Floquet propagator

$$
U_{\mathrm{KI}}=e^{-i H_{\mathrm{K}}} e^{-i H_{\mathrm{I}}}
$$

J, b : homogeneous spin-coupling and transverse field h_{j} position dependent longitudinal field

Remarks:

- KI model is integrable if $b=0$ or $h_{j} \equiv 0$.
- For generic h_{j} and $b \neq 0$, the model has no symmetries.
- The clean model $h_{j} \equiv h$, for $J \sim b \sim h \sim 1$ appears to be ergodic and its spectral statistics well described by RMT
- The clean model appears to display non-trivial non-ergodicity - ergodicity transition when h is varied [TP PRE 2002, TP JPA 2007, see also Vajna, Klobas, TP, Polkovnikov, PRL 120, 200607 (2018)]

The disorder averaging

Consider longitudinal magnetic field h_{j} to be i.i.d. (Gaussian) variable with mean \bar{h} and standard deviation σ

$$
\bar{K}(t)=\mathbb{E}_{h}[K(t)]=\int_{-\infty}^{\infty}\left(\prod_{j=1}^{L} \frac{\mathrm{~d} h_{j}}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(h_{j}-\bar{h}\right)^{2}}{2 \sigma^{2}}\right)\right) K(t) .
$$

For $|J|=|b|=\pi / 4$ and σ large enough the behaviour seems immediately RMT-like ($t_{\mathrm{T}} \sim 1$) Interpreting $\bar{K}(t)$ in terms of a partition function of $2 d$ classical statistical model, we can study SFF analytically in thermodynamic limit!

Theorem: For odd t :

$$
\lim _{L \rightarrow \infty} \bar{K}(t)=\left\{\begin{array}{ll}
2 t-1, & t \leq 5 \\
2 t, & t \geq 7
\end{array} .\right.
$$

Theorem: For odd t :

$$
\lim _{L \rightarrow \infty} \bar{K}(t)=\left\{\begin{array}{ll}
2 t-1, & t \leq 5 \\
2 t, & t \geq 7
\end{array} .\right.
$$

Conjecture: For even t :

$$
\begin{aligned}
& \bar{K}(2)=2, \bar{K}(4)=7, \bar{K}(6)=13, \bar{K}(8)=18, \bar{K}(10)=22, \\
& \bar{K}(t)=2 t+1, \quad t \geq 12 .
\end{aligned}
$$

Theorem: For odd t :

$$
\lim _{L \rightarrow \infty} \bar{K}(t)=\left\{\begin{array}{ll}
2 t-1, & t \leq 5 \\
2 t, & t \geq 7
\end{array} .\right.
$$

Conjecture: For even t :

$$
\begin{aligned}
& \bar{K}(2)=2, \bar{K}(4)=7, \bar{K}(6)=13, \bar{K}(8)=18, \bar{K}(10)=22, \\
& \bar{K}(t)=2 t+1, \quad t \geq 12 .
\end{aligned}
$$

Remarks:

- Results independent of $\sigma>0$: The model is ergodic for any disorder strength (no Floquet-MBL!). In particular, we can take the limit of a clean system at the end $\sigma \searrow 0$.
- Results independent of \bar{h} : We can set $\bar{h}=0$ which corresponds to a limiting integrable system.

Theorem: For odd t :

$$
\lim _{L \rightarrow \infty} \bar{K}(t)= \begin{cases}2 t-1, & t \leq 5 \\ 2 t, & t \geq 7\end{cases}
$$

Conjecture: For even t :

$$
\begin{aligned}
& \bar{K}(2)=2, \bar{K}(4)=7, \bar{K}(6)=13, \bar{K}(8)=18, \bar{K}(10)=22, \\
& \bar{K}(t)=2 t+1, \quad t \geq 12
\end{aligned}
$$

Remarks:

- Results independent of $\sigma>0$: The model is ergodic for any disorder strength (no Floquet-MBL!). In particular, we can take the limit of a clean system at the end $\sigma \searrow 0$.
- Results independent of \bar{h} : We can set $\bar{h}=0$ which corresponds to a limiting integrable system.

We found a simple locally interacting model with finite dimensional local Hilbert space with proven RMT spectral correlations at all time-scales!

Sketch of the proof. Space-time duality

The trace of U_{KI}^{t} is equivalent to a partition sum of a classical 2 d Ising model with row-homogeneous field h_{j} :

Duality relation

$$
\operatorname{tr}\left(U_{\mathrm{KI}}[\boldsymbol{h}]\right)^{t}=\operatorname{tr}\left(\prod_{j=1}^{L} \tilde{U}_{\mathrm{KI}}\left[h_{j} \boldsymbol{\epsilon}\right]\right)
$$

where $\boldsymbol{\epsilon}=(\underset{\sim}{1}, 1 \ldots, \underset{\sim}{1})$ and \tilde{U}_{KI} is a KI model on a ring of size t with twisted parameters $\tilde{J}(J, b), \tilde{b}(J, b)$.

Sketch of the proof. Space-time duality

The trace of U_{KI}^{t} is equivalent to a partition sum of a classical 2d Ising model with row-homogeneous field h_{j} :

Duality relation

$$
\operatorname{tr}\left(U_{\mathrm{KI}}[\boldsymbol{h}]\right)^{t}=\operatorname{tr}\left(\prod_{j=1}^{L} \tilde{U}_{\mathrm{KI}}\left[h_{j} \boldsymbol{\epsilon}\right]\right)
$$

where $\boldsymbol{\epsilon}=(1,1 \ldots, 1)$ and \tilde{U}_{KI} is a KI model on a ring of size t with twisted parameters $\tilde{J}(J, b), \tilde{b}(J, b)$.
Remarkably: \tilde{U}_{KI} is unitary for $|J|=|b|=\pi / 4$ (Self-dual, $J= \pm \tilde{J}, b= \pm \tilde{b}$)

Space-time duality allows to simply express the disorder averaging:

$$
\mathbb{T} \equiv \mathbb{E}_{h}\left[\tilde{U}_{\mathrm{KI}}[h \boldsymbol{\epsilon}] \otimes \tilde{U}_{\mathrm{KI}}[h \boldsymbol{\epsilon}]^{*}\right]=\left(\tilde{U}_{\mathrm{KI}} \otimes \tilde{U}_{\mathrm{KI}}^{*}\right) \cdot \mathbb{O}_{\sigma} \quad \text { Non-Unitary }
$$

$$
\mathbb{O}_{\sigma}=\exp \left[-\frac{1}{2} \sigma^{2}\left(M_{z} \otimes I-I \otimes M_{z}\right)^{2}\right]
$$

Space-time duality allows to simply express the disorder averaging:

$$
\mathbb{E}_{\boldsymbol{h}}[K(t)]
$$

$$
\mathbb{E}_{h_{3}^{z}}
$$

$$
\mathbb{T} \equiv \mathbb{E}_{h}\left[\tilde{U}_{\mathrm{KI}}[h \boldsymbol{\epsilon}] \otimes \tilde{U}_{\mathrm{KI}}[h \boldsymbol{\epsilon}]^{*}\right]=\left(\tilde{U}_{\mathrm{KI}} \otimes \tilde{U}_{\mathrm{KI}}^{*}\right) \cdot \mathbb{O}_{\sigma} \quad \text { Non-Unitary }
$$

$$
\mathbb{O}_{\sigma}=\exp \left[-\frac{1}{2} \sigma^{2}\left(M_{z} \otimes I-I \otimes M_{z}\right)^{2}\right]
$$

Computation of thermodynamic SFF $\lim _{L \rightarrow \infty} \mathbb{T}^{L}$ thus amounts to determining the multiplicity of eigenvalue 1 of \mathbb{T} and proving positive spectral gap.

The following is straightforward to show:

Property 1

(1) The eigenvalues of \mathbb{T} of maximal (unit) magnitude are either +1 or -1 .
(c) Each eigenvector associated to the eigenvalue ± 1 is uniquely paramertrized by an operator $A \in \operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes t}\right)$ satisfying

$$
\begin{equation*}
U A U^{\dagger}= \pm A, \quad\left[A, M_{\alpha}\right]=0, \quad \alpha \in\{x, y, z\} . \tag{1}
\end{equation*}
$$

where we have defined $M_{\alpha}=\sum_{\tau=1}^{t} \sigma_{\tau}^{\alpha}, U=\exp \left[i \frac{\pi}{4} \sum_{\tau=1}^{t}\left(\sigma_{\tau}^{z} \sigma_{\tau+1}^{z}-1\right)\right]$.
U is the parity of half-number of domain walls in the spin configuration, $U^{2}=\mathbb{1}$.

Unimodular eigenvalues of \mathbb{T}

The following is straightforward to show:

Property 1

(1) The eigenvalues of \mathbb{T} of maximal (unit) magnitude are either +1 or -1 .
(2) Each eigenvector associated to the eigenvalue ± 1 is uniquely paramertrized by an operator $A \in \operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes t}\right)$ satisfying

$$
\begin{equation*}
U A U^{\dagger}= \pm A, \quad\left[A, M_{\alpha}\right]=0, \quad \alpha \in\{x, y, z\} \tag{1}
\end{equation*}
$$

where we have defined $M_{\alpha}=\sum_{\tau=1}^{t} \sigma_{\tau}^{\alpha}, U=\exp \left[i \frac{\pi}{4} \sum_{\tau=1}^{t}\left(\sigma_{\tau}^{z} \sigma_{\tau+1}^{z}-1\right)\right]$.
U is the parity of half-number of domain walls in the spin configuration, $U^{2}=\mathbb{1}$.

Observation: The operators U, M_{α} are translationally invariant and reflection symmetric \Rightarrow All elements of $\mathcal{D}_{t}=\left\{\Pi^{n} R^{m}, n \in\{0,1, \ldots, t-1\}, m \in\{0,1\}\right\}$ fullfil (1) with +1 , where

$$
\Pi=\prod_{\tau=1}^{t-1} P_{\tau, \tau+1}, \quad R=\prod_{\tau=1}^{\lfloor t / 2\rfloor} P_{\tau, t+1-\tau}
$$

are translation and reflection on a spin ring of length t.

Property 2
The number of linearly independent elements of \mathcal{D}_{t} is $2 t$ for $t \geq 6,2 t-1$ for $t \in\{1,3,4,5\}$, and 2 for $t=2$.

Property 2

The number of linearly independent elements of \mathcal{D}_{t} is $2 t$ for $t \geq 6,2 t-1$ for $t \in\{1,3,4,5\}$, and 2 for $t=2$.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1 .

Property 2

The number of linearly independent elements of \mathcal{D}_{t} is $2 t$ for $t \geq 6,2 t-1$ for $t \in\{1,3,4,5\}$, and 2 for $t=2$.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1 .

Theorem

For odd t, all A satisfying (1) are given by linear combination of elements of \mathcal{D}_{t}.

Property 2

The number of linearly independent elements of \mathcal{D}_{t} is $2 t$ for $t \geq 6,2 t-1$ for $t \in\{1,3,4,5\}$, and 2 for $t=2$.

Property 3

For odd t, Eq. (1) can be fulfilled only for eigenvalue +1 .

Theorem

For odd t, all A satisfying (1) are given by linear combination of elements of \mathcal{D}_{t}.

Observation: For even t, we find generically exactly one additional operator A satisfying Eq. (1). For special values of $t \leq 10$ we find an extra additional operator, and also solutions of Eq. (1) for eigenvalue -1 .

t	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17															
$\#_{+1}$	2	5	7	9	13	14	18	18	22	22	25	26	29	30	33
34															
$\#_{-1}$	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0

- The first exact result on ergodicity in terms of spectral correlations for an interacting quantum many-body problem
- Self-dual instances of Kicked Ising chain provide a minimal model of quantum many-body chaos with no intrinsic time scales (Thouless time $=1$)
Pending open problems and promising future directions:
(1) Complete the picture by rigorous analysis of the even t case.
(2) Structural stability of the self-dual point: Perturbation theory may have a finite radius of convergence?
(3) Potentially accessible ergodicity - MBL transition from the ergodic side?
(a) Computing dynamics of entanglement entropy via space-time duality.
© Path to a rigorous approach to ETH?

This work has been supported by the Slovenian Research Agency (ARRS) and

