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Topological Insulators with Interactions

See reviews: Hasan and Kane (2010); Qi and Zhang (2011); Senthil (2015); Wen (2017), ...



Boundaries of topological insulators with disorder:

Gapless metallic, avoidance of Anderson localization

Boundaries of topological insulators with interactions:

Gapless metallic

Gapped, symmetry broken

Gapped, forming topological order

Q: Are these exhaustive with disorder and interaction?



Gapless insulating edges of dirty interacting topological insulators

Ref: PRB 98, 054205 (2018)

Localization-driven correlated states of two isolated interacting helical edges

Ref: https://arxiv.org/abs/1806.02353
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Gapless insulating edges of dirty interacting TIs

Ref: Chou, Nandkishore, Radzihovsky, PRB 98, 054205 (2018)



2D Z2 Topological Insulator

2D Z2 Topological Insulators:

Kane-Mele, BHZ models

HgTe, InAs/GaSb, WTe2, WSe2, ...

Time reversal symmetry

Robust edge states against TRS disorder

Potential platform for Majorana zero mode

T -breaking perturbation Non magnetic impuritiy



Dirty Interacting TI Edges

A minimal generic model for 2D TI edge states:

Helical Luttinger liquid

Time reversal symmetric (TRS) perturbations:

TRS disorder + TRS umklapp interaction

Not including material specific issues, external perturbations, . . .



Model

Ĥ0 = vF

∫
x

[
R† (−i∂xR)− L† (−i∂xL)

]
.

Time-reversal operation:

R→ L, L→ −R, i→ −i.

Normal impurity backscattering:

L†R+R†L → −R†L− L†R

TRS breaking!

TRS Disorder:

ĤV =

∫
x

V (x)
[
R†(x)R(x) + L†(x)L(x)

]
.

V (x)V (y) = ∆δ(x− y), V (x) = 0.

TRS umklapp term:

HU = U

∫
x

[
e−iδQx :

(
L†R

)2

: +H.c.

]
.

δQ = Q− 4kF , Q = 2π/a

Luttinger Interactions:

TRS marginal perturbation



Helical Luttinger Liquid + TRS Perturbations

TRS disorder only:

Spatially varying chemical potential

Forward scattering → Ballistic

TRS umklapp only:

Commensurate-incommensuarate CDW
Pokrovsky and Talapov (1979)

δQ 6= 0 generically → Ballistic

TRS disorder + TRS umklapp:

Disorder-assisted backscattering for T 6= 0.
Fiete, et al (2006); Kainaris, et al (2014); Chou, et al (2015).

Scatterings rate Γ:
Chou, Levchenko, Foster (2015)

Γ ∝

{
e−

vδQ
2T , clean

T 8K−2, disorder

δQ is compensated by V (x) randomly → Local commensuration

→ Localization at zero T?



Bosonized Action

Bosonization: n = 1
π∂xθ, j = − 1

π∂tθ.

S =

∫
τ,x

1

2πvK

[
(∂τθ)

2 + v2 (∂xθ)
2]+

∫
τ,x

V (x)
1

π
∂xθ + Ũ

∫
τ,x

cos [4θ − δQx].

S0, K < 1 TRS disorder TRS umklapp

Under a linear transformation of θ, TRS disorder is eliminated

S → S0 +
Ũ

2

∫
τ,x

{
η(x) ei4θ(τ,x) + η∗(x) e−i4θ(τ,x)

}
= S0 + Ũ

∫
τ,x

cos [4θ + χ(x)] ,

η(x) = eiχ(x)

χ(x) = − 4K
v

∫ x
−∞ dsV (s)− δQx

η∗(x′)η(x) = e−
8K2

v2 ∆|x−x′|e−iδQ(x−x′), η(x′)η(x) = η(x)→ 0



Mapping to Giamarchi-Schulz Model

Effective disorder averaged action:

SU,dis=−∆U

∑
a,b

∫
τ,τ ′,x

cos
[
4
(
θa(τ, x)−θb(τ ′, x)

)]
,

Also see derivations in Kainaris, et al (2014).

∆U = Ũ2 K2∆/v2

16(K2∆/v2)2+δQ2/4
.

Giamarchi-Schulz Model with K → 4K

1D Bose glass RG with Kc = 3/8.

Wu, Bernevig, and Zhang (2006); Xu and Moore (2006)

Giamarchi-Schulz Model: Bosonization form of 1D disordered Luttinger liquid

SGS,dis=−∆GS

∑
a,b

∫
τ,τ ′,x

cos
[
2
(
θa(τ, x)−θb(τ ′, x)

)]
.

Localization for K < 3/2.

Physical intepretation? What is localized?



K → 0, δQ = 0, Gaussian Disorder

H ≈
∫
x

V (x)
1

π
∂xθ + Ũ

∫
x

cos (4θ)

“Imry-Ma” argument:

→ No long-ranged order

Diluted kinks and anti-kinks

Ground state:

Spontaneous TRS breaking

Spin-glass fashion

δQ 6= 0 → V (x) is shifted by vδQ → Similar ground state



Luther-Emery Point (K = 1/4): Refermionization

A 1D massive e/2 Dirac fermion with scalar disorder

ĤLE =− iv
∫
dx
[
Ψ†R∂xΨR −Ψ†L∂xΨL

]
+M

∫
dx
[
Ψ†RΨL + Ψ†LΨR

]
+

1

2

∫
dx[V (x) + vδQ]

[
Ψ†RΨR + Ψ†LΨL

]
,

Anderson Localization Bocquet (1999)

ρLE(x) = 1
2
n(x) and jLE(x) = 1

2
j(x).

→ dc conductivity = 0

→ compressibility 6= 0

→ Gapless insulating state



Phase Diagram

Gaussain disorder:

δQ 6= 0: Kc = 3/8

Bounded disorder:

Fine structures near δQ = 0

Gapped insulator - Glass - Metal



Non-monotonicity in Localization Length

SU,dis =−∆U

∑
a,b

∫
τ,τ ′,x

cos
[
4
(
θa(τ, x)− θb(τ ′, x)

)]
, ∆U = Ũ2 K2∆/v2

16(K2∆/v2)2+δQ2/4 .

lU ∼ α∆
−1/(3−8K)
U
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Localization-driven correlated states

of two isolated interacting helical edges

Ref: Chou, arxiv.org/abs/1806.02353



Two Isolated Helical Luttinger Liquids

Two isolated TI edges with inter-edge Coulomb interaction.

No single particle tunneling

Interplay of inter-edge interaction and disorder

Platform: Coulomb drag experiments for TI edges



Disorder and Interaction Terms

TRS Inter-edge Interactions

Ĥ− =U−

∫
dx
[
e−iδQ−xL†1R1R

†
2L2 + H.c.

]
, δQ− = Q− 2kF1 + 2kF2

Ĥ+ =U+

∫
dx
[
e−iδQ+xL†1R1L

†
2R2 + H.c.

]
, δQ+ = Q− 2kF1 − 2kF2

ĤLL =U

∫
dx
(
R†1R1 + L†1L1

)(
R†2R2 + L†2L2

)
,

TRS disorder

ĤV =
∑
a=1,2

∫
dxVa(x)

[
R†a(x)Ra(x) + L†a(x)La(x)

]
,



Symmetric and Anti-symmetric Modes

Θ± = 1√
2

(θ1 ± θ2)
θ1

Θ
+ Θ

-= +
θ2

TRS Inter-edge Backscatterings

Ĥb,− =
U−

2π2α2

∫
dx cos

[
2
√

2Θ− − δQ−x
]
,

Ĥb,+ =
U+

2π2α2

∫
dx cos

[
2
√

2Θ+ − δQ+x
]
,

Luttinger Interactions

Ĥb,LL =
U

2π2

∫
dx
[
(∂xΘ+)

2 − (∂xΘ−)
2
]
.

Generically, 1 > K− > K+. Klesse and Stern (2000)

TRS disorder

Ĥb,V =

∫
dxV+(x)

1

π
∂xΘ+ +

∫
dxV−(x)

1

π
∂xΘ−, V± =

1√
2

(V1 ± V2)



Clean Identical Edges (kF,1 = kF,2)

TRS Inter-edge Backscattering

Ĥb,− =
U−

2π2α2

∫
dx cos

[
2
√

2Θ−

]
,

Ĥb,+ =
U+

2π2α2

∫
dx cos

[
2
√

2Θ+ − δQ+x
]
.

δQ+ is nonzero generically. Ĥb,+ can be ignored.

Θ− is gapped when K− < 1

Θ+ remains metallic

Symmetric interlocked fluid → Infinite T = 0 drag resistivity
Nazarov and Averin (1998); Klesse and Stern (2000)

Θ
+ +



Localization of Inter-edge Modes

Bosonized action:

S0,± =
1

2πv±K±

∫
dτdx

[
(∂τΘ±)

2
+ v2
± (∂xΘ±)

2
]
,

SV,± =

∫
dτdxV±(x)

1

π
∂xΘ±,

SU,± =
U±

2π2α2

∫
dτdx cos

[
2
√

2Θ± − δQ±x
]
.

For K± < 3/4 and δQ± 6= 0, −→ inter-edge ± mode is localized.

Kc = 3/4 > 3/8 → Dominating over intra-edge instability

Non-monotonic localization length in disorder strength

Luther-Emery point at K± = 1/2



Dirty TI Edges with Non-equal Denisties

2 HLLs
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Negative Drag Insulator

Interaction

Weak interactions → Two helical Luttinger liquids

Both Θ+ and Θ− modes are localized,

→ A spontaneous TRS broken localized insulator

Only Θ+ mode is localized, → An interlocked fluid state.

New drag mechanism! Θ
-+



Summary (1)

Main Results

Gapless insulating edges made of e/2 particles

Non-monotonic localization length

A possible scenario for InAs/GaSb systems

Experimental Signatures

Insulator-like finite T conductivity

Mott-Berezinskii finite ac conductivity

Collective depinning behavior in nonlinear I-V

Our theory also applies to helical hindge states of HOTIs.



Summary (2)

Main Results

A localizing mechanism for correlation

Inter-edge localized insulator

Negative drag for non-identical edges

Proposed experimental signatures

To be done ...

Finite temperature and finite size

ac conductivity for edge-loop setup

WTe2 and WSe2
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