

Dirty interacting two-dimensional topological insulator edges

Yang-Zhi Chou

Department of Physics and CTQM, University of Colorado Boulder

September 5, 2018

Topological Insulators with Interactions

See reviews: Hasan and Kane (2010); Qi and Zhang (2011); Senthil (2015); Wen (2017), \dots

Boundaries of topological insulators with disorder:

• Gapless metallic, avoidance of Anderson localization

Boundaries of topological insulators with interactions:

- Gapless metallic
- Gapped, symmetry broken
- Gapped, forming topological order

Q: Are these exhaustive with disorder and interaction?

Gapless insulating edges of dirty interacting topological insulators
 Ref: PRB 98, 054205 (2018)

Localization-driven correlated states of two isolated interacting helical edges
 Ref: https://arxiv.org/abs/1806.02353

The works are funded by Simons Foundation, Sloan, NSF, and Army Research Office.

Gapless insulating edges of dirty interacting TIs

Ref: Chou, Nandkishore, Radzihovsky, PRB 98, 054205 (2018)

2D \mathbb{Z}_2 Topological Insulator

- Kane-Mele, BHZ models
- HgTe, InAs/GaSb, WTe₂, WSe₂, ...
- Time reversal symmetry
- Robust edge states against TRS disorder
- Potential platform for Majorana zero mode

\mathcal{T} -breaking perturbation

Non magnetic impuritiy

Dirty Interacting TI Edges

A minimal generic model for 2D TI edge states: Helical Luttinger liquid

Time reversal symmetric (TRS) perturbations:

TRS disorder + TRS umklapp interaction

Not including material specific issues, external perturbations, ...

Model

$$\hat{H}_{0} = v_{F} \int_{x} \left[R^{\dagger} \left(-i \partial_{x} R \right) - L^{\dagger} \left(-i \partial_{x} L \right) \right].$$

Time-reversal operation:

$$R \to L, L \to -R, i \to -i.$$

Normal impurity backscattering: $L^{\dagger}R + R^{\dagger}L \rightarrow -R^{\dagger}L - L^{\dagger}R$

TRS breaking!

TRS Disorder:

$$\hat{H}_V = \int\limits_x V(x) \left[R^{\dagger}(x) R(x) + L^{\dagger}(x) L(x) \right].$$

$$\overline{V(x)V(y)} = \Delta\delta(x-y), \ \overline{V(x)} = 0.$$

TRS umklapp term:

$$H_U = U \int_x \left[e^{-i\delta Qx} : \left(L^{\dagger} R \right)^2 : + \text{H.c.} \right].$$

$$\delta Q = Q - 4k_F, \ Q = 2\pi/a$$

Luttinger Interactions:

TRS marginal perturbation

Helical Luttinger Liquid + TRS Perturbations

TRS disorder only:

Spatially varying chemical potential

Forward scattering \rightarrow **Ballistic**

TRS umklapp only:

Commensurate-incommensuarate CDW Pokrovsky and Talapov (1979)

 $\delta Q \neq 0$ generically \rightarrow **Ballistic**

TRS disorder + TRS umklapp:

Disorder-assisted backscattering for $T \neq 0$.

Fiete, et al (2006); Kainaris, et al (2014); Chou, et al (2015).

Scatterings rate Γ : Chou, Levchenko, Foster (2015)

$$\Gamma \propto \begin{cases} e^{-\frac{v\delta Q}{2T}}, & \text{clean} \\ T^{8K-2}, & \text{disorder} \end{cases}$$

 δQ is compensated by V(x) randomly \rightarrow Local commensuration

 \rightarrow Localization at zero T?

Bosonized Action

Bosonization: $n = \frac{1}{\pi} \partial_x \theta$, $j = -\frac{1}{\pi} \partial_t \theta$.

$$\begin{split} \mathcal{S} = & \int\limits_{\tau,x} \frac{1}{2\pi v K} \left[\left(\partial_{\tau} \theta \right)^2 + v^2 \left(\partial_x \theta \right)^2 \right] + \int\limits_{\tau,x} V(x) \frac{1}{\pi} \partial_x \theta + \tilde{U} \int\limits_{\tau,x} \cos{\left[4\theta - \delta Q x \right]}. \\ \mathcal{S}_0, \ K < 1 & \textbf{TRS disorder} & \textbf{TRS umklapp} \end{split}$$

Under a linear transformation of θ , TRS disorder is eliminated

$$\mathcal{S} \to \mathcal{S}_0 + \frac{\tilde{U}}{2} \int_{\tau,x} \left\{ \eta(x) e^{i4\theta(\tau,x)} + \eta^*(x) e^{-i4\theta(\tau,x)} \right\} = \mathcal{S}_0 + \tilde{U} \int_{\tau,x} \cos\left[4\theta + \chi(x)\right],$$

- $\chi(x) = -\frac{4K}{v} \int_{-\infty}^{x} ds V(s) \delta Qx$
- $\overline{\eta^*(x')\eta(x)} = e^{-\frac{8K^2}{v^2}\Delta|x-x'|}e^{-i\delta Q(x-x')}, \ \overline{\eta(x')\eta(x)} = \overline{\eta(x)} \to 0$

Mapping to Giamarchi-Schulz Model

Effective disorder averaged action:

$$S_{U,dis} = -\Delta_U \sum_{a,b_{\tau,\tau',x}} \int_{-\infty} \cos \left[4 \left(\theta_a(\tau,x) - \theta_b(\tau',x) \right) \right], \quad \Delta_U = \tilde{U}^2 \frac{K^2 \Delta/v^2}{16(K^2 \Delta/v^2)^2 + \delta Q^2/4}.$$

Also see derivations in Kainaris, et al (2014).

• Giamarchi-Schulz Model with $K \to 4K$

Giamarchi-Schulz Model: Bosonization form of 1D disordered Luttinger liquid

Localization for K < 3/2.

• 1D Bose glass RG with $K_c = 3/8$.

Wu, Bernevig, and Zhang (2006); Xu and Moore (2006)

Physical interretation? What is localized?

$K \to 0$, $\delta Q = 0$, Gaussian Disorder

$$H pprox \int_{x} V(x) \frac{1}{\pi} \partial_{x} \theta + \tilde{U} \int_{x} \cos{(4\theta)}$$

"Imry-Ma" argument:

 \rightarrow No long-ranged order Diluted kinks and anti-kinks

Ground state:

Spontaneous **TRS** breaking Spin-glass fashion

 $\delta Q \neq 0 \rightarrow V(x)$ is shifted by $v \delta Q \rightarrow$ Similar ground state

Luther-Emery Point (K = 1/4): Refermionization

A 1D massive e/2 Dirac fermion with scalar disorder

$$\begin{split} \hat{H}_{LE} &= -iv \int dx \left[\Psi_R^\dagger \partial_x \Psi_R - \Psi_L^\dagger \partial_x \Psi_L \right] \\ &+ M \int dx \left[\Psi_R^\dagger \Psi_L + \Psi_L^\dagger \Psi_R \right] + \frac{1}{2} \int dx [V(x) + v \delta Q] \left[\Psi_R^\dagger \Psi_R + \Psi_L^\dagger \Psi_L \right], \end{split}$$

Anderson Localization Bocquet (1999)

$$\rho^{\mathrm{LE}}(x) = \frac{1}{2} n(x)$$
 and $j^{\mathrm{LE}}(x) = \frac{1}{2} j(x)$.

- \rightarrow dc conductivity = 0
- \rightarrow compressibility $\neq 0$
- \rightarrow Gapless insulating state

Phase Diagram

Gaussain disorder:

$$\delta Q \neq 0$$
: $K_c = 3/8$

Bounded disorder:

Fine structures near $\delta Q=0$ Gapped insulator - Glass - Metal

Non-monotonicity in Localization Length

$$S_{U,dis} = -\Delta_U \sum_{a,b_{\tau,\tau',x}} \int_{\tau,\tau',x} \cos\left[4\left(\theta_a(\tau,x) - \theta_b(\tau',x)\right)\right], \qquad \Delta_U = \tilde{U}^2 \frac{K^2 \Delta/v^2}{16(K^2 \Delta/v^2)^2 + \delta Q^2/4}.$$

Localization-driven correlated states of two isolated interacting helical edges

Ref: Chou, arxiv.org/abs/1806.02353

Two Isolated Helical Luttinger Liquids

Two isolated TI edges with inter-edge Coulomb interaction.

- No single particle tunneling
- Interplay of inter-edge interaction and disorder
- Platform: Coulomb drag experiments for TI edges

Disorder and Interaction Terms

TRS Inter-edge Interactions

$$\begin{split} \hat{H}_{-} &= U_{-} \int dx \left[e^{-i\delta Q_{-}x} L_{1}^{\dagger} R_{1} R_{2}^{\dagger} L_{2} + \text{H.c.} \right], \ \delta Q_{-} = Q - 2k_{F1} + 2k_{F2} \\ \hat{H}_{+} &= U_{+} \int dx \left[e^{-i\delta Q_{+}x} L_{1}^{\dagger} R_{1} L_{2}^{\dagger} R_{2} + \text{H.c.} \right], \ \delta Q_{+} = Q - 2k_{F1} - 2k_{F2} \\ \hat{H}_{\text{LL}} &= U \int dx \left(R_{1}^{\dagger} R_{1} + L_{1}^{\dagger} L_{1} \right) \left(R_{2}^{\dagger} R_{2} + L_{2}^{\dagger} L_{2} \right), \end{split}$$

TRS disorder

$$\hat{H}_V = \sum_{a=1,2} \int dx \, V_a(x) \left[R_a^{\dagger}(x) R_a(x) + L_a^{\dagger}(x) L_a(x) \right],$$

Symmetric and Anti-symmetric Modes

$$\Theta_{\pm} = \frac{1}{\sqrt{2}} \left(\theta_1 \pm \theta_2 \right) \qquad \qquad \theta_1 = \Theta_{\pm} + \Theta_{-}$$

TRS Inter-edge Backscatterings

$$\hat{H}_{b,-} = \frac{U_{-}}{2\pi^{2}\alpha^{2}} \int dx \cos\left[2\sqrt{2}\Theta_{-} - \delta Q_{-}x\right],$$

$$\hat{H}_{b,+} = \frac{U_{+}}{2\pi^{2}\alpha^{2}} \int dx \cos\left[2\sqrt{2}\Theta_{+} - \delta Q_{+}x\right],$$

Luttinger Interactions

$$\hat{H}_{b,\text{LL}} = \frac{U}{2\pi^2} \int dx \left[(\partial_x \Theta_+)^2 - (\partial_x \Theta_-)^2 \right].$$

Generically, $1 > K_{-} > K_{+}$. Klesse and Stern (2000)

TRS disorder

$$\hat{H}_{b,V} = \int dx \, V_+(x) \frac{1}{\pi} \partial_x \Theta_+ + \int dx \, V_-(x) \frac{1}{\pi} \partial_x \Theta_-, \ \, V_\pm = \frac{1}{\sqrt{2}} \left(V_1 \pm V_2 \right)$$

Clean Identical Edges $(k_{F,1} = k_{F,2})$

TRS Inter-edge Backscattering

$$\begin{split} \hat{H}_{b,-} &= \frac{U_{-}}{2\pi^{2}\alpha^{2}} \int dx \cos\left[2\sqrt{2}\Theta_{-}\right], \\ \hat{H}_{b,+} &= \frac{U_{+}}{2\pi^{2}\alpha^{2}} \int dx \cos\left[2\sqrt{2}\Theta_{+} - \delta Q_{+}x\right]. \end{split}$$

 δQ_+ is nonzero generically. $\hat{H}_{b,+}$ can be ignored.

- Θ_{-} is gapped when $K_{-} < 1$
- Θ_+ remains metallic

• Symmetric interlocked fluid \rightarrow Infinite T=0 drag resistivity Nazarov and Averin (1998); Klesse and Stern (2000)

Localization of Inter-edge Modes

Bosonized action:

$$S_{0,\pm} = \frac{1}{2\pi v_{\pm} K_{\pm}} \int d\tau dx \left[(\partial_{\tau} \Theta_{\pm})^2 + v_{\pm}^2 (\partial_x \Theta_{\pm})^2 \right],$$

$$S_{V,\pm} = \int d\tau dx V_{\pm}(x) \frac{1}{\pi} \partial_x \Theta_{\pm},$$

$$S_{U,\pm} = \frac{U_{\pm}}{2\pi^2 \alpha^2} \int d\tau dx \cos \left[2\sqrt{2}\Theta_{\pm} - \delta Q_{\pm} x \right].$$

For $K_{\pm} < 3/4$ and $\delta Q_{\pm} \neq 0$, \longrightarrow inter-edge \pm mode is **localized**.

- $K_c = 3/4 > 3/8 \rightarrow$ Dominating over intra-edge instability
- Non-monotonic localization length in disorder strength
- Luther-Emery point at $K_{\pm} = 1/2$

Dirty TI Edges with Non-equal Denisties

- Weak interactions \rightarrow Two helical Luttinger liquids
- Both Θ₊ and Θ_− modes are localized,
 → A spontaneous TRS broken localized insulator
- Only Θ_+ mode is localized, \to An interlocked fluid state.

New drag mechanism!

Summary (1)

Main Results

- Gapless insulating edges made of e/2 particles
- Non-monotonic localization length
- A possible scenario for InAs/GaSb systems

Experimental Signatures

- Insulator-like finite T conductivity
- Mott-Berezinskii finite ac conductivity
- \bullet Collective depinning behavior in nonlinear I-V

Our theory also applies to helical hindge states of HOTIs.

Summary (2)

Main Results

- A localizing mechanism for correlation
- Inter-edge localized insulator
- Negative drag for non-identical edges
- Proposed experimental signatures

To be done ...

- Finite temperature and finite size
- ac conductivity for edge-loop setup
- WTe₂ and WSe₂