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Floguet models can be “nondispersing”

* Simple unitary matrix: Dispersion relation:
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Dispersionless systems are “classica

 Particle has sharply defined velocity; wavepackets
don’t spread

III

* Dynamics in “specia
classically
* Building blocks for more interesting models

basis can be understood (U

* Eigenstates are still delocalized and entangled

» Key feature: product states map to product states
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Interacting “classical” Floquet systems

* Maps from z-basis product states to other product states:

O S SR S B SO

* Constraints:
* Must be unitary/reversible (we’re interested in quantum dynamics)
* Update rule must be local

* General class of models that work: reversible cellular automata



Why study these models?

* Could be building blocks of more interesting models (cf. time crystals)

* Useful in their own right
* Many aspects of thermalization are under-explored

* For example:
* Are all nonthermal systems either conventionally integrable or MBL?
* Does ETH for small [o(1)] subsystems always imply ETH for large [o(L)] subsystems?
 How do operators spread in nonthermal systems?



This talk

* Some generalities

 Model 1 (Clifford-East)

* Small subsystems are thermal, large subsystems may violate ETH depending on system size
* Operators spread as a fractal inside the light-cone

 Model 2 (“Floquet-Fredrickson-Andersen”)
* Simple model of an interacting integrable system
* Operator spreading “chaotic” in some respects (although model is integrable)



Some generalities




Quantum circuit models
time I ............................................ =
............................................... t=1/2

e Apply local guantum gates
 Randomly in both space and time (Nahum et al. 2016, von Keyserlingck et al. 2016)

* Randomly in space but periodically in time
(Chandran, Laumann 2015; Chan, De Luca, Chalker 2018)

* Periodically in both space and time (SG+Zakirov 2018; also Schumacher, Werner, Carr...)

* |n the periodic case, a single cycle is a “Floquet unitary” and has eigenstates
* But no energy conservation, unlike a Hamiltonian



An extremely simple circuit

* No entanglement growth for z-basis initial product states

-

\

o

CNOT: flip
right spin if

N

left spin is up

/

* General principle: flip A conditioned on neighboring B’s, then vice versa



Constructing eigenstates

 Under time evolution

* Evidently, this is an eigenstate with eigenvalue unity:

) = N(|C1) +|Ca) +|C3) ... + [Cn))

* Eigenstates are classically constructible!
 Start with a random configuration
e Evolve until recurrence
e Sum up over the “orbit” with appropriate phases



Operator spreading

e Standard method: squared commutator / “OTOC” for initial product state

(b]of (t)o5 (0)o7 (t)a (0)[v) = {(Y(®)|oF ()} { (blofUT)of (Uaf|)) }

* Corresponds to overlap between trajectories with and without a perturbation at
timet=0

* |.e., flipped bits between the unperturbed and perturbed configurations



CNOT circuits



Time evolution of product states
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Additive dynamics
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Additive dynamics

* CNOT circuit dynamics is noninteracting histories of single spins
* Consequence of “Clifford” nature of CNOT gates

* Implication: OTOC is the history of a single perturbed spin
* What does that look like in this model?




Operators spread as spacetime fractals




Eigenstate entanglement

half-chain
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Scaling of eigenstate entanglement

e Origin of anomalously low entanglement:

* Recurrence time ~ system size L
* “Multiplicity” of L, so entropy ~ log(L)
* However, small subsystems are completely thermal

— L=64
L=32
L=16

* All local observables are also close to thermal

* This system obeys “conservative” ETH 05 -

. 5 10 15 20
but violates strong ETH...

subsystem size /

* depending on prime factorization of system size!



s this system integrable or chaotic?

* Neither (in a conventional sense)

* Chaotic behavior:
* Heisenberg operator “fills in” the light-cone

e Conventional integrable behavior:
* Some operators have the property

[Zz OAi’U} =0

* No such operators can exist in this model: every Pauli string grows with time
* This appears to be a different type of integrable dynamics
* Self-similar behavior of some autocorrelation functions



Model 2: soliton gas



Dynamical rule and quasiparticles

* Flip each A site if one or both neighbors is up
e Cannot make up out of Clifford gates; need a “Toffoli” gate
* Inherently interacting (though still “classical”) model [related to Bobenko Rule 54 CA]



Dynamical rule and quasiparticles

* Flip each A site if one or both neighbors is up

e Cannot make up out of Clifford gates; need a “Toffoli” gate

* Inherently interacting (though still “classical”) model [related to Bobenko Rule 54 CA]

* Quasiparticles are left and right movers:

A B

A B A B

A

B A B A B

] One period
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How quasiparticles
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The quantization condition

* Time for R movers to wrap around depends on total number of L movers
tr~L/2+2N,, E\"” =2rk/t,

* Higher density of L’s -> more states for R’s -> more R’s -> more states for L’s
* Number fluctuations of L and R movers are not independent



The quantization condition

* Time for R movers to wrap around depends on total number of L movers
tr~L/2+2N,, E\"” =2rk/t,

* Higher density of L’s -> more states for R’s -> more R’s -> more states for L’s
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* Recurrence time is LCM of orbits, o 30
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Operator growth

Operator “front” in this model broadens diffusively (when averaged) because of
random time-delays due to collisions [expected to be generic for integrable systems]

100 200 300 400 500 100 200 300 400 500
X X X
Single product state Averaged over states At a fixed late time



with R. Vasseur

Details of operator growth

* Velocity of a right-mover:

4nl
1+n;+n,

Uy = 2

front var

e Qualitative “hydrodynamic” picture:
density fluctuations cause velocity
fluctuations, which cause spreading

filling

* Works very well up to factor of 2



Why does the front fill in?

* |In the dilute limit, we can address individual quasiparticles

* Moving a single quasiparticle does not create a butterfly effect, just gives you the
trace of the moved quasiparticle:

(d)




Why does the front fill in?

* Processes where the operator creates/destroys quasiparticles

* All very local operators do this because you can create quasiparticles even
without changing the total number of up spins

(a) - (b)

* Adding a gp is disruptive because it changes the phase shifts of all the opposite-
moving gqps




Adding quantum fluctuations
 Would like to add non-commuting piece U = UoUl, U, = eXp(th)
* What to choose for H?

* Terms adding dispersion for quasiparticles should preserve integrability as long
as no gps are being created or destroyed

* Simplest operators that do this:

(1—0f)ofofo 05 (1 —0f)+he., (1—-0f)ofo;(1—0f)+h.e.



Preliminary results: level statistics

* Integrability-preserving:
(1= 05)oy oy (1= 03)

* Integrability-breaking: 0?02_

A

Quasi-
energy

Perturbation strength ——»



Summary/outlook

* Reversible cellular automata are useful starting points for interesting many-body dynamics
* Models that are neither chaotic nor integrable
* Dispersionless hard-rod gas: an extremely simple interacting integrable model

* Can explicitly compute eigenstate entanglement, OTOC, spatio-temporal correlations,...

 How robust are these phenomena?
* Integrability appears to survive adding a dispersion
* What about noise and disorder that couple to specific quasiparticles?
* What about integrability-breaking perturbations?
* Are there interacting Floquet systems with fractal light-cones?
* Generalized “prethermal time crystals” based on arbitrary cellular automata®?



