Cellular automata as a "classical limit" of Floquet dynamics

Sarang Gopalakrishnan (CUNY)

arXiv:1802.07729 [with Bahti Zakirov (CUNY)]

arXiv:1806.04156

+ unpublished work with Romain Vasseur

Floquet models can be "nondispersing"

Simple unitary matrix:

$$\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

Moves all particles one step left

Floquet models can be "nondispersing"

Simple unitary matrix:

$$\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

- Moves all particles one step left

• Eigenstates w/ eigenvalues
$$\lambda_k=e^{i\pi k/6}$$

$$|\psi\rangle=\frac{1}{\sqrt{6}}(|1\rangle+e^{i\theta}|2\rangle+\dots e^{5i\theta}|6\rangle)$$

Floquet models can be "nondispersing"

• Simple unitary matrix:

$$\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

- Moves all particles one step left

• Eigenstates w/ eigenvalues
$$\lambda_k=e^{i\pi k/6}$$

$$|\psi\rangle=\frac{1}{\sqrt{6}}(|1\rangle+e^{i\theta}|2\rangle+\dots e^{5i\theta}|6\rangle)$$

Dispersion relation:

Dispersionless systems are "classical"

- Particle has sharply defined velocity; wavepackets don't spread
- Dynamics in "special" basis can be understood classically
 - Building blocks for more interesting models
 - Eigenstates are still delocalized and entangled
- Key feature: product states map to product states

Interacting "classical" Floquet systems

Maps from z-basis product states to other product states:

$$|\dots\uparrow\uparrow\downarrow\uparrow\dots\rangle\mapsto|\dots\uparrow\downarrow\downarrow\uparrow\dots\rangle$$

- Constraints:
 - Must be unitary/reversible (we're interested in quantum dynamics)
 - Update rule must be local
- General class of models that work: reversible cellular automata

Why study these models?

- Could be building blocks of more interesting models (cf. time crystals)
- Useful in their own right
 - Many aspects of thermalization are under-explored
- For example:
 - Are all nonthermal systems either conventionally integrable or MBL?
 - Does ETH for small [o(1)] subsystems always imply ETH for large [o(L)] subsystems?
 - How do operators spread in nonthermal systems?

This talk

Some generalities

- Model 1 (Clifford-East)
 - Small subsystems are thermal, large subsystems may violate ETH depending on system size
 - Operators spread as a fractal inside the light-cone
- Model 2 ("Floquet-Fredrickson-Andersen")
 - Simple model of an interacting integrable system
 - Operator spreading "chaotic" in some respects (although model is integrable)

Some generalities

Quantum circuit models

- Apply local quantum gates
 - Randomly in both space and time (Nahum et al. 2016, von Keyserlingck et al. 2016)
 - Randomly in space but periodically in time (Chandran, Laumann 2015; Chan, De Luca, Chalker 2018)
 - Periodically in both space and time (SG+Zakirov 2018; also Schumacher, Werner, Carr...)
- In the periodic case, a single cycle is a "Floquet unitary" and has eigenstates
 - But no energy conservation, unlike a Hamiltonian

An extremely simple circuit

- No entanglement growth for z-basis initial product states
- General principle: flip A conditioned on neighboring B's, then vice versa

Constructing eigenstates

Under time evolution

$$|C_1\rangle \mapsto |C_2\rangle \mapsto |C_3\rangle \ldots \mapsto |C_1\rangle \mapsto |C_2\rangle \ldots$$

Evidently, this is an eigenstate with eigenvalue unity:

$$|\psi\rangle = \mathcal{N}(|C_1\rangle + |C_2\rangle + |C_3\rangle \dots + |C_N\rangle)$$

- Eigenstates are classically constructible!
 - Start with a random configuration
 - Evolve until recurrence
 - Sum up over the "orbit" with appropriate phases

Operator spreading

Standard method: squared commutator / "OTOC" for initial product state

$$\langle \psi | \sigma_i^z(t) \sigma_j^x(0) \sigma_i^z(t) \sigma_j^x(0) | \psi \rangle = \{ \langle \psi(t) | \sigma_i^z | \psi(t) \rangle \} \left\{ (\langle \psi | \sigma_j^x U^{\dagger}) \sigma_i^z (U \sigma_j^x | \psi \rangle) \right\}$$

 Corresponds to overlap between trajectories with and without a perturbation at time t = 0

• I.e., flipped bits between the unperturbed and perturbed configurations

CNOT circuits

Time evolution of product states

Additive dynamics

Additive dynamics

- CNOT circuit dynamics is noninteracting histories of single spins
- Consequence of "Clifford" nature of CNOT gates
- Implication: OTOC is the history of a single perturbed spin
 - What does that look like in this model?

Operators spread as spacetime fractals

X

Eigenstate entanglement

Scaling of eigenstate entanglement

- Origin of anomalously low entanglement:
 - Recurrence time ~ system size L
 - "Multiplicity" of L, so entropy ~ log(L)
 - However, small subsystems are completely thermal
- All local observables are also close to thermal
- This system obeys "conservative" ETH but violates strong ETH...

depending on prime factorization of system size!

Is this system integrable or chaotic?

- Neither (in a conventional sense)
- Chaotic behavior:
 - Heisenberg operator "fills in" the light-cone
- Conventional integrable behavior:
 - Some operators have the property

$$\left[\sum_{i} \hat{O}_{i}, \hat{U}\right] = 0$$

- No such operators can exist in this model: every Pauli string grows with time
- This appears to be a different type of integrable dynamics
- Self-similar behavior of some autocorrelation functions

Model 2: soliton gas

Dynamical rule and quasiparticles

- Flip each A site if one or both neighbors is up
 - Cannot make up out of Clifford gates; need a "Toffoli" gate
 - Inherently interacting (though still "classical") model [related to Bobenko Rule 54 CA]

Dynamical rule and quasiparticles

- Flip each A site if one or both neighbors is up
 - Cannot make up out of Clifford gates; need a "Toffoli" gate
 - Inherently interacting (though still "classical") model [related to Bobenko Rule 54 CA]
- Quasiparticles are left and right movers:

How quasiparticles interact

Analogous to hard rods with length -1 and only one velocity

The quantization condition

• Time for R movers to wrap around depends on total number of L movers

$$t_r \simeq L/2 + 2N_l, \quad E_k^{(r)} = 2\pi k/t_r$$

- Higher density of L's -> more states for R's -> more R's -> more states for L's
 - Number fluctuations of L and R movers are not independent

The quantization condition

• Time for R movers to wrap around depends on total number of L movers

$$t_r \simeq L/2 + 2N_l, \quad E_k^{(r)} = 2\pi k/t_r$$

- Higher density of L's -> more states for R's -> more R's -> more states for L's
 - Number fluctuations of L and R movers are not independent
- Recurrence time is LCM of orbits, hence quadratic in system size (half-chain entanglement entropy is ~2 log L)

Operator growth

Operator "front" in this model broadens diffusively (when averaged) because of random time-delays due to collisions [expected to be generic for integrable systems]

Details of operator growth

• Velocity of a right-mover:

$$v_r = 2 - \frac{4n_l}{1 + n_l + n_r}$$

• Qualitative "hydrodynamic" picture: density fluctuations cause velocity fluctuations, which cause spreading

Works very well up to factor of 2

Why does the front fill in?

- In the dilute limit, we can address individual quasiparticles
- Moving a single quasiparticle does not create a butterfly effect, just gives you the trace of the moved quasiparticle:

Why does the front fill in?

- Processes where the operator creates/destroys quasiparticles
- All very local operators do this because you can create quasiparticles even without changing the total number of up spins

 Adding a qp is disruptive because it changes the phase shifts of all the oppositemoving qps

Adding quantum fluctuations

- Would like to add non-commuting piece $U=U_0U_1, U_1=\exp(iHt)$
- What to choose for H?

- Terms adding dispersion for quasiparticles should preserve integrability as long as no qps are being created or destroyed
- Simplest operators that do this:

$$(1 - \sigma_1^z)\sigma_2^+\sigma_3^+\sigma_4^-\sigma_5^-(1 - \sigma_6^z) + \text{h.c.}, \quad (1 - \sigma_1^z)\sigma_2^+\sigma_3^-(1 - \sigma_4^z) + \text{h.c.}$$

Preliminary results: level statistics

Integrability-preserving:

$$(1 - \sigma_0^z)\sigma_1^+\sigma_2^-(1 - \sigma_3^z)$$

• Integrability-breaking: $\sigma_1^+\sigma_2^-$

Perturbation strength

Summary/outlook

- Reversible cellular automata are useful starting points for interesting many-body dynamics
 - Models that are neither chaotic nor integrable
 - Dispersionless hard-rod gas: an extremely simple interacting integrable model
- Can explicitly compute eigenstate entanglement, OTOC, spatio-temporal correlations,...
- How robust are these phenomena?
 - Integrability appears to survive adding a dispersion
 - What about noise and disorder that couple to specific quasiparticles?
 - What about integrability-breaking perturbations?
 - Are there interacting Floquet systems with fractal light-cones?
 - Generalized "prethermal time crystals" based on arbitrary cellular automata?