Heating and prethermalization in driven quantum many-body systems

Wen Wei Ho Harvard University

DynQ Workshop, KITP Santa Barbara, CA Oct 11, 2018 FOUNDATION

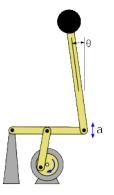
Comm. Math. Phys. 354, 809-827 (2017) Phys. Rev. B 95, 235110 (2017) Phys. Rev. Lett. 120, 200601 (2018)

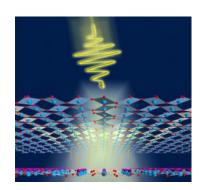
Aim

- Review some previous rigorous results pertaining to slow heating and prethermalization in periodically-driven (Floquet) quantum many-body systems
- Present some newer results regarding bounds on heating in periodically-driven quantum many-body systems with long-range interactions (some new technical tools required)
- More generally, highlight the tools and techniques used that might be illuminating in understanding thermalization processes / finding new dynamical regimes and new dynamical phases in other kinds of systems (not necessarily only driven)

Motivation: why periodic driving?

Floquet Engineering

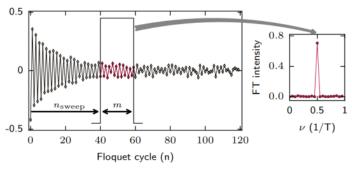


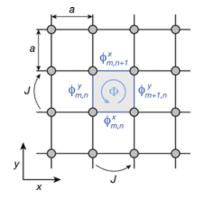


Kapitza Pendulum Kapitza

Light induced superconductivity Fausti et al, Mitrano et al,

Novel dynamical phases of matter





Artificial Gauge Fields (Cold atoms)

Jotzu et al, Aidelsburger et al,

. . .

Floquet TIs Floquet SPTs Floquet FCIs Floquet FQH..

Lindner, Refael, Moessner, Galitski, Rudner, Kitagawa, Grushin, Lee, etc...

Floquet Time Crystals

Else, Bauer, Nayak, Khemani, Sondhi, von Keyserlingk, Choi et al, Zhang et al, etc...

However, a challenge:

- Systems are generically interacting. In fact some of the desired Floquet physics require interactions
- Upon breaking of energy conservation + interactions, "heat death"?

$$H(t) = H(t + T)$$

$$U(t) = \mathcal{T}e^{-\int_0^t dt' H(t')}$$

$$B$$

$$P_A(t) = \lim_{t \to \infty} Tr_B [U(t)^{\dagger} \rho_0 U(t)] = \frac{\mathbb{I}_A}{\mathcal{D}_A} (??)$$

However, a challenge:

- Systems are generically interacting. In fact some of the desired Floquet physics require interactions
- Upon breaking of energy conservation + interactions, "heat death"?

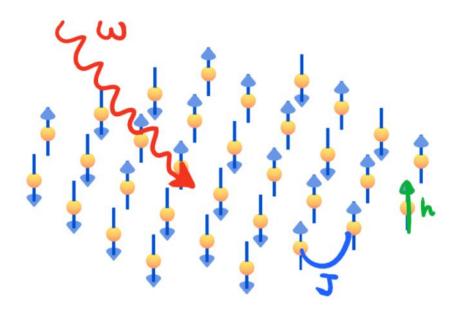
$$H(t) = H(t+T)$$

$$U(t) = \mathcal{T}e^{-\int_0^t dt' H(t')}$$

$$P_A(t) = \lim_{t \to \infty} Tr_B [U(t)^{\dagger} \rho_0 U(t)] = \frac{\mathbb{I}_A}{\mathcal{D}_A} (??)$$

- Is this always true? No, strong disorder can prevent it (many-body localization)
- More generally, what are the heating **rates** in a driven system? What are the timescales of thermalization?
- How long-lived are transient dynamical phenomena?

Set-up (Short-range for now)



- Consider periodically driven many-body lattice system $H(t) = H_0 + g V(t)$
- Bounded local Hilbert space e.g. spins, fermions
- Local interactions e.g. $J\sigma_i^z\sigma_{i+1}^z$, $h\sigma_i^x$, $g\sigma_i^z f(t)$, ...
- Also consider the regime $\omega \gg J, g, h$

Warm-up

(Linear Response, Fermi's Golden Rule)

- $H(t) = H_0 + g V(t)$
- Consider beginning from a single eigenstate $|n\rangle$ of H_0
- V(t) has harmonics $\pm \omega$
- Transition rate:

$$\Gamma(\omega) = g^2 \sum_{m} |\langle n|V|m \rangle|^2 \delta(\omega - E_n + E_m)$$

Warm-up

(Linear Response, Fermi's Golden Rule)

- $H(t) = H_0 + g V(t)$
- Consider beginning from a single eigenstate $|n\rangle$ of H_0
- V(t) has harmonics $\pm \omega$
- Transition rate:

$$\Gamma(\omega) = g^2 \sum_{m} |\langle n|V|m \rangle|^2 \delta(\omega - E_n + E_m)$$

Trick: Insert commutator with *H*₀:

Abanin, De Roeck, Huveneers, PRL

$$\Gamma(\omega) = g^2 \sum_{m} \frac{\left| \langle n | [H_0, V] | m \rangle \right|^2}{\omega^2} \delta(\omega - E_n + E_m)$$

$$= g^2 \sum_{m} \frac{\left| \langle n | [[H_0, [H_0, V]] | m \rangle \right|^2}{\omega^{2 \times 2}} \delta(\omega - E_n + E_m)$$

$$= \cdots = g^2 \sum_{m} \frac{\left| \left| \langle n | [[H_0, [H_0, \cdots [H_0, V]]]^{(p)} | m \rangle \right|^2}{\omega^{2p}} \delta(\omega - E_n + E_m)$$

Warm-up (Linear Response, Fermi's Golden Rule)

$$\Gamma(\omega) = g^2 \sum_{m} \frac{\left| \left| n \left| \left[[H_0, [H_0, \cdots [H_0, V]] \right]^{(p)} \right| m \right\rangle \right|^2}{\omega^{2p}} \delta(\omega - E_n + E_m)$$

$$\omega: \text{Largest scale, suppression} \sim \frac{1}{\omega^{2p}}$$

Nested commutators:

1.
$$[h_{i,i+1} + h_{i,i-1}, v_i] = \widetilde{h_{i,i+1}} + \widetilde{h_{i,i-1}}$$

2. $[h_{i,i+1} + h_{i,i-1}, \widetilde{h_{i,i+1}} + \widetilde{h_{i,i-1}}] = h'_{i,i+1} + h'_{i-1,i,i+1} + h'_{i,i-1} + h''_{i-1,i,i+1}$
3. Many **local** terms generated...

... p. # Terms ~ *p*!

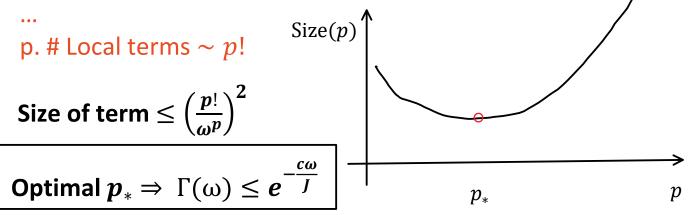
Warm-up (Linear Response, Fermi's Golden Rule) $\Gamma(\omega) = g^2 \sum_{m}^{1} \frac{\left[\left[H_0, \left[H_0, \cdots \left[H_0, V \right] \right] \right]^{(p)} \right]^2}{\omega^{2p}} \delta(\omega - E_n + E_m)$

 ω : Largest scale, suppression $\sim \frac{1}{\omega}$

Nested commutators:

1.
$$[h_{i,i+1} + h_{i,i-1}, v_i] = \widetilde{h_{i,i+1}} + \widetilde{h_{i,i-1}}$$

2. $[h_{i,i+1} + h_{i,i-1}, \widetilde{h_{i,i+1}} + \widetilde{h_{i,i-1}}] = h'_{i,i+1} + h'_{i-1,i,i+1} + h'_{i,i-1} + h''_{i-1,i,i+1}$
3. Many local terms generated...



Warm-up (Linear Response, Fermi's Golden Rule) $\left\langle n \left[\left[H_0, \left[H_0, \cdots \left[H_0, V \right] \right] \right]^{(p)} \right] m \right\rangle$ $\Gamma(\omega)=g^2$ $-\delta(\omega - E_n + E_m)$ ω^{2p} mIntuition: ω Size(*p*) Size of term $\leq \left(\frac{p!}{\omega^p}\right)^2$ Сω **Optimal** $p_* \Rightarrow \Gamma(\omega) \leq e^{-T}$ р p_*

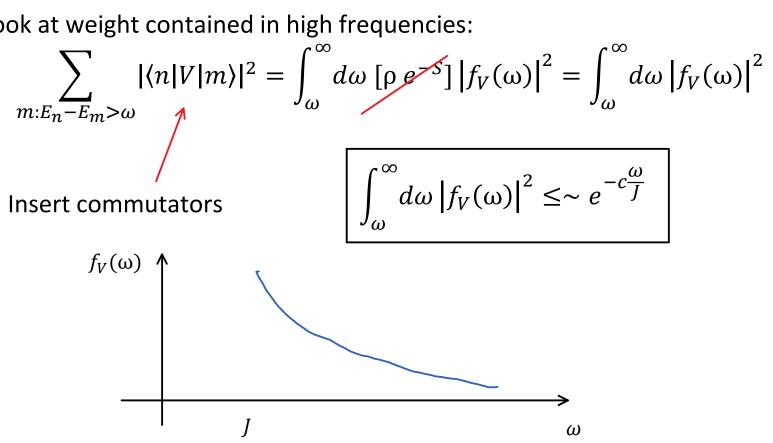
An aside: Off-diagonal matrix elements in ETH

Srednicki's ansatz:

$$\langle n|V|m\rangle = e^{-\frac{S}{2}}f_V(\omega)R_{nm}$$

How does $f_V(\omega)$ behave?

Look at weight contained in high frequencies:



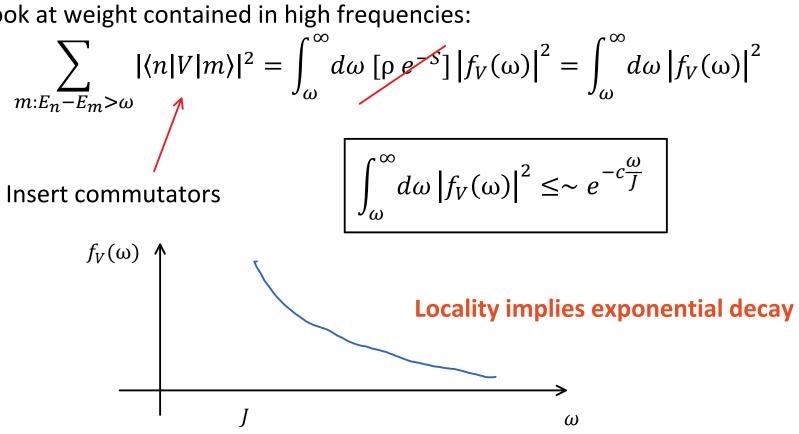
An aside: Off-diagonal matrix elements in ETH

Srednicki's ansatz:

$$\langle n|V|m\rangle = e^{-\frac{S}{2}}f_V(\omega)R_{nm}$$

How does $f_V(\omega)$ behave?

Look at weight contained in high frequencies:



Can result be made non-perturbative? (i.e. finite driving amplitude g)

$$H(t) = H_0 + V(t)$$

Can we understand dynamics in terms of a static Hamiltonian H_{eff} ? Floquet Theorem + Magnus expansion:

$$H_{eff} = \frac{1}{T} \int_0^T H(t) dt + \frac{1}{2T} \int_0^T dt_1 \int_0^{t_1} dt_2 [H(t_1), H(t_2)] + \cdots$$

Presumably works well for small T or large ω .

$$H(t) = H_0 + V(t)$$

Can we understand dynamics in terms of a static Hamiltonian H_{eff} ? Floquet Theorem + Magnus expansion:

$$H_{eff} = \frac{1}{T} \int_0^T H(t) dt + \frac{1}{2T} \int_0^T dt_1 \int_0^{t_1} dt_2 [H(t_1), H(t_2)] + \cdots$$

Presumably works well for small T or large ω .

Do they matter?

If we can ignore them, then this is an avoidance of Floquet thermalization to infinite temperature. These terms **must** matter generically.

 $H(t) = H_0 + V(t)$

Go into a suitably chosen rotating frame

$$H'(t) = Q(t)^{\dagger} (H_0 + V(t) - i \partial_t) Q(t)$$

Choose $Q(t) = \exp[(S_1(t) + S_2(t) + S_3(t) + \dots + S_n(t))]$
Book-keeping: $\sim \frac{1}{\omega}$ $\sim \frac{1}{\omega^2}$ $\sim \frac{1}{\omega^3}$ $\sim \frac{1}{\omega^n}$

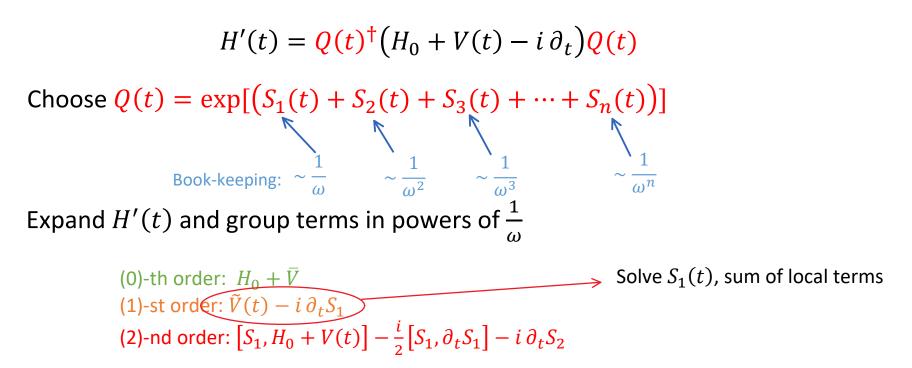
 $H(t) = H_0 + V(t)$

Go into a suitably chosen rotating frame

 $H'(t) = Q(t)^{\dagger} (H_0 + V(t) - i \partial_t) Q(t)$ Choose $Q(t) = \exp[(S_1(t) + S_2(t) + S_3(t) + \dots + S_n(t))]$ Book-keeping: $\sim \frac{1}{\omega}$ $\sim \frac{1}{\omega^2}$ $\sim \frac{1}{\omega^3}$ $\sim \frac{1}{\omega^n}$ Expand H'(t) and group terms in powers of $\frac{1}{\omega}$ $(0)\text{-th order: } H_0 + \overline{V}$ $(1)\text{-st order: } \widetilde{V}(t) - i \partial_t S_1$ $(2)\text{-nd order: } [S_1, H_0 + V(t)] - \frac{i}{2}[S_1, \partial_t S_1] - i \partial_t S_2$

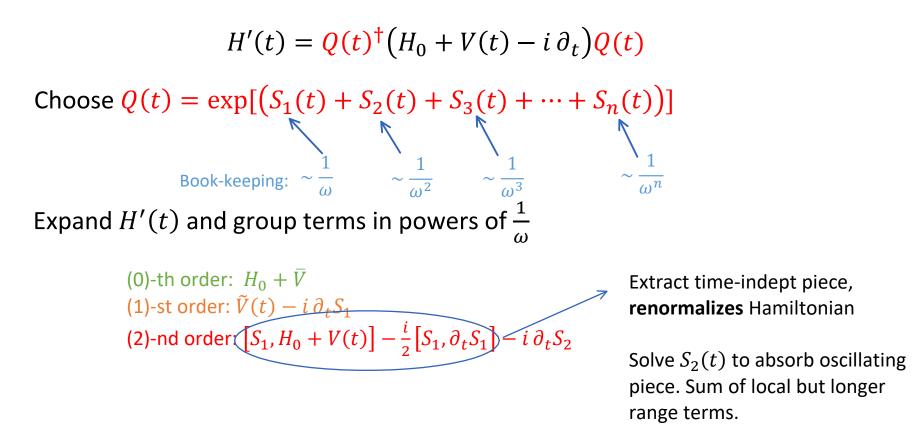
 $H(t) = H_0 + V(t)$

Go into a suitably chosen rotating frame



 $H(t) = H_0 + V(t)$

Go into a suitably chosen rotating frame



 $H(t) = H_0 + V(t)$

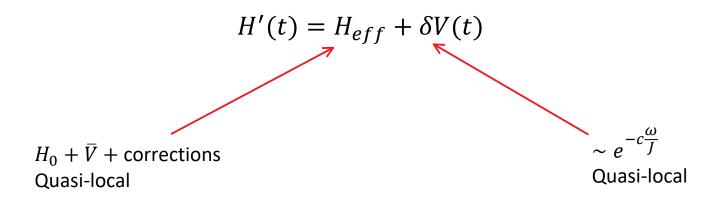
Go into a suitably chosen rotating frame

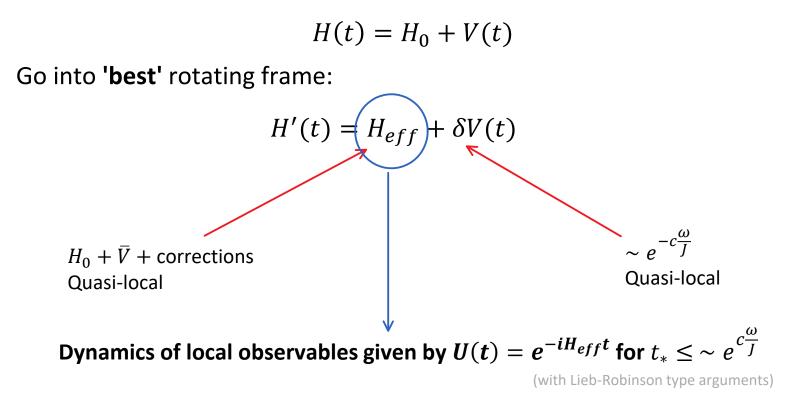
 $H'(t) = Q(t)^{\dagger} (H_0 + V(t) - i \partial_t) Q(t)$ Choose $Q(t) = \exp[(S_1(t) + S_2(t) + S_3(t) + \dots + S_n(t))]$ Book-keeping: $\sim \frac{1}{\omega}$ $\sim \frac{1}{\omega^2}$ $\sim \frac{1}{\omega^3}$ $\sim \frac{1}{\omega^n}$ Expand H'(t) and group terms in powers of $\frac{1}{\omega}$ $(0)\text{-th order: } H_0 + \overline{V}$ $(1)\text{-st order: } \widetilde{V}(t) - i \partial_t S_1$ $(2)\text{-nd order: } [S_1, H_0 + V(t)] - \frac{i}{2}[S_1, \partial_t S_1] - i \partial_t S_2$

Higher orders involve more and nested commutators. Number of local terms grows as n! again. Suppression as ω^n

$$H(t) = H_0 + V(t)$$

Go into 'best' rotating frame:

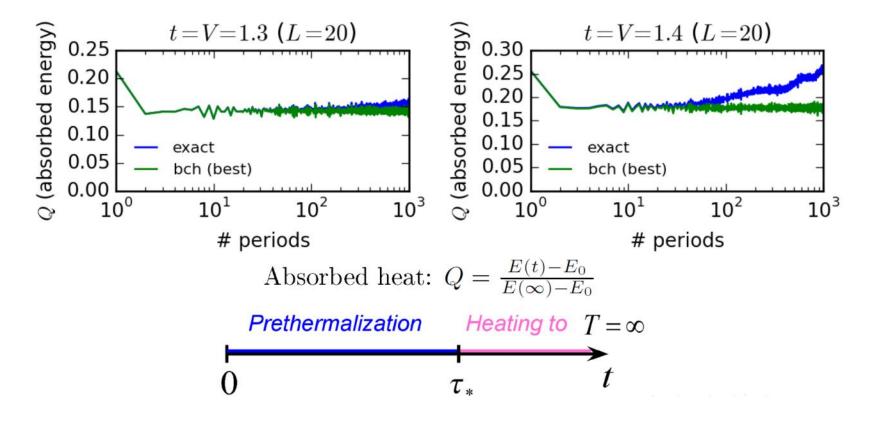




Implies prethermalization to H_{eff} for long times. Results from locality + high frequency

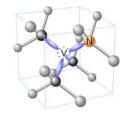
Some numerics (unpublished)

 $\begin{array}{ll} U_F = e^{-iH_0t}e^{-iH_1V}, & H_0 = \sum_i hs_i^z + Js_i^zs_{i+1}^z, & H_1 = \sum_i Js_i^xs_{i+1}^x\\ U_{\rm bch} = e^{-iH_*T} \mbox{ eff. Hamiltonian} \end{array}$

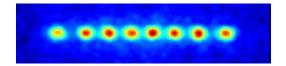


How about systems with long-range interactions $\sim \frac{1}{r^{\alpha}}$?

Many synthetic quantum systems have longrange interactions



NV-centers, Polar molecules
$$\sim \frac{1}{r^3}$$
, $d = 3$



Trapped ions
$$\sim \frac{1}{r^{\alpha}}$$
, $0 < \alpha < 3$, $d = 1$

			** ******	** ** ; ;
100				17
111111	111111	11111	111111	
U(t)	U(t)	U(t)	U(t)	U(t)
<u>11111</u>	<u></u>	7.9.9.9	7191919	1111

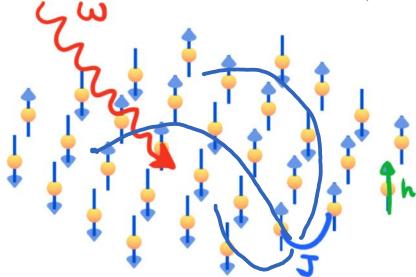
Rydberg atoms (van der Waals) $\sim \frac{1}{r^6}, d = 1,2$

Long-range interactions: faster entanglement generation, faster preparation of states, possible new phases of matter (with or without driving).

But also, curse: more heating?

Can we understand heating rates in such driven systems? Is there prethermalization?

Set-up (with Long-range interactions)



- Consider periodically driven many-body lattice system with $\omega \gg J$, h, ...
- Bounded local Hilbert space e.g. spins, fermions in d-dim
- Long range interactions

$$H = \sum_{ij} \frac{J_{ij}}{r_{ij}^{\alpha}} O_{ij} + \kappa \sum_{i} \vec{h}_{i} \cdot \vec{\sigma}_{i} + g \sum_{x} V_{x} \cos(\omega t)$$

Consider $\frac{d}{2} < \alpha \leq d$. To ensure thermodynamic stability, assume J_{ij} random variable with zero mean and bounded higher moments.

Set-up (with Long-range interactions)

$$H = \sum_{ij} \frac{J_{ij}}{r_{ij}^{\alpha}} O_{ij} + \kappa \sum_{i} \vec{h}_i \cdot \vec{\sigma}_i + g \sum_{x} V_x \cos(\omega t) \qquad \frac{d}{2} < \alpha \le d$$

Look at energy absorption at **high temps (low** β)

$$\frac{dE}{dt} = 2g^2\omega^2\sigma(\omega,\beta)$$
$$\sigma(\omega,\beta) = \sum_{nm} \frac{\pi\beta\omega}{Z_0} |\langle n|V|m\rangle|^2 \delta(E_n - E_m - \omega)$$

Weight of **disorder averaged** spectral function at high frequencies

$$\sigma([\omega]) \equiv \langle \int_{-\omega}^{\infty} d\omega' \sigma(\omega', \beta) \rangle$$

Tricks

$$\sigma([\omega]) = \langle \int_{\omega}^{\infty} \sum_{nm} \frac{\pi\beta\omega}{Z_0} |\langle n|V|m \rangle|^2 \delta(E_n - E_m - \omega) \rangle$$
1) Insert in nested commutators of H_0

2) Delta function picks out subset of states.Lift restriction to let all pairs contribute;becomes trace:

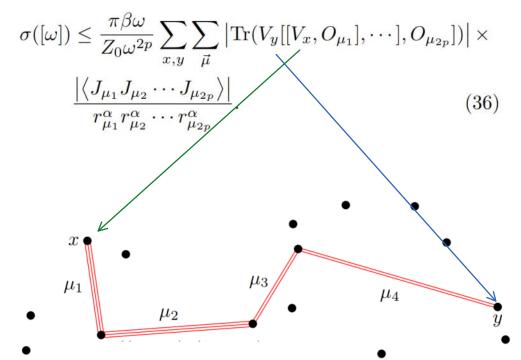
$$\leq \frac{\pi\beta\omega}{Z_{0}\omega^{2p}} \left\langle \operatorname{Tr}\left([[V,H],\cdots],H]^{(p)}[[[V,H],\cdots],H]^{(p)}\right) \right\rangle$$

$$= \frac{\pi\beta\omega}{Z_{0}\omega^{2p}} \left| \left\langle \operatorname{Tr}\left(V[[[V,H],\cdots],H]^{(2p)}\right) \right\rangle \right|$$

3. Use cyclicity of trace

WWH, Protopopov, Abanin, PRL (2018)

Result



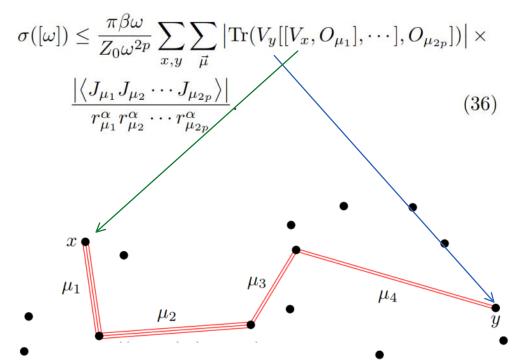
Disorder averaging forces links μ to be **at least paired**. This makes relevant terms have denominators

$$\sim \frac{1}{r_{\mu}^{\boldsymbol{n}\alpha}}$$
 where $\boldsymbol{n} \geq 2$

effectively "longer-ranged". Clever resummation of the infinite terms gives

$$\sigma([\omega]) \le N\pi\beta\omega e^{-\frac{\omega}{B}}$$

Result



Disorder averaging forces links μ to be **at least paired**. This makes relevant terms have denominators

$$\sim \frac{1}{r_{\mu}^{\boldsymbol{n}\alpha}}$$
 where $\boldsymbol{n} \geq 2$

effectively "longer-ranged". Clever resummation of the infinite terms gives

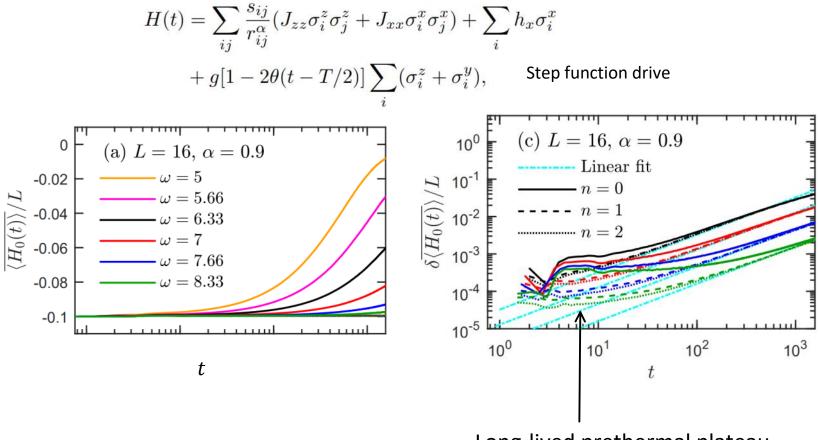
$$\sigma([\omega]) \le N\pi\beta\omega e^{-\frac{\omega}{B}}$$

Exponentially suppressed heating rate!

WWH, Protopopov, Abanin, PRL (2018)

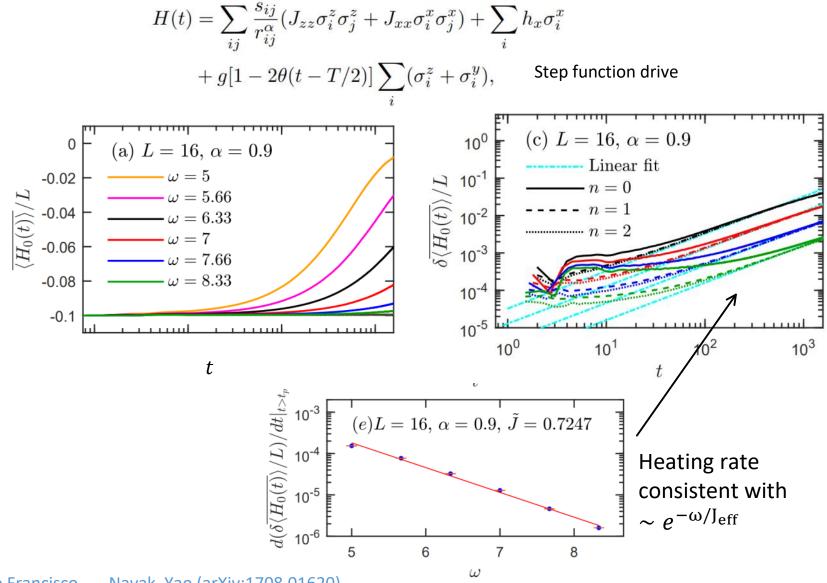
Can result be made non-perturbative? Is there a prethermal Hamiltonian?

Numerics



Long-lived prethermal plateau

Numerics



See also Francisco, ..., Nayak, Yao (arXiv:1708.01620)

WWH, Protopopov, Abanin, PRL (2018)

Lessons learnt so far

Locality and large energy scale (driving frequency) leads to exponentially suppressed heating rate and prethermalization in periodically driven many-body systems, with short or long-range interactions. This requires choosing an appropriate frame of reference to view the system from. Note that the "large" scale does not mean large compared to the unphysical many-body bandwidth.

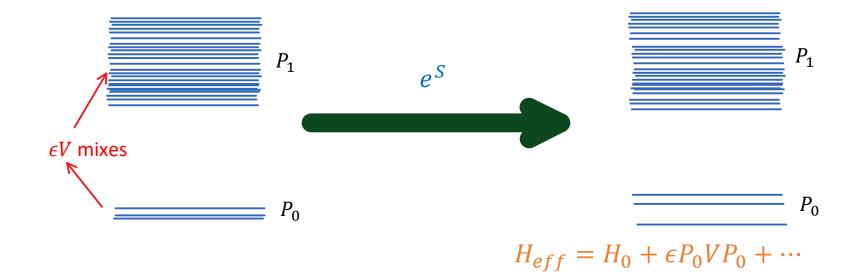
This story is actually a lot more general.

Generically, one can consider different iterative frame transformations that might yield different effective Hamiltonians and effective dynamical behavior.

Schrieffer-Wolff transformation

If H_0 has a low energy sector separated by a spectral gap, can find a rotated frame of reference where $H_0 + \epsilon V$ has same low energy sector with some effective dynamics

$$e^{S}[H_{0} + \epsilon V]e^{-S} = P_{0}H_{eff}P_{0} + \cdots$$



Near "integrable" systems

Say *H* has an almost conserved charge e.g. U(1) charge $\sum_i S_i^z$

$$H = J \sum_{i} S_{i}^{z} + \eta D + \epsilon V \qquad J \gg \eta, \epsilon$$

Here D commutes with charge, V does not.

Can find a frame of reference e^{S} such that

$$H' = e^{S}He^{-S} = J\sum_{i}S_{i}^{Z} + \eta D' + e^{-\frac{\epsilon}{J}}V'$$

Near "integrable" systems

Say *H* has an almost conserved charge e.g. U(1) charge $\sum_i S_i^z$

$$H = J \sum_{i} S_{i}^{Z} + \eta D + \epsilon V \qquad J \gg \eta, \epsilon$$

Here D commutes with charge, V does not.

Can find a frame of reference e^{S} such that

$$H' = e^{S}He^{-S} = J\sum_{i}S_{i}^{Z} + \eta D' + e^{-\frac{\epsilon}{J}}V'$$

Exponentially suppressed!

Implies dressed charge $e^{-S} \sum_i S_i^z e^S$ is conserved for exponentially long times

Abanin, De Roeck, WWH, Huveneers, CMP (2017)

Consider a periodically driven system with unitary map

$$U_{F} = e^{-i\frac{\pi}{2}\sum_{i}S_{i}^{x}}e^{-i\mathcal{T}\int_{0}^{T}(JD(t) + \epsilon V(t))dt} \propto \prod_{i}X_{i}e^{-i\mathcal{T}\int_{0}^{T}(JD(t) + \epsilon V(t))dt}$$

$$Z_{2} \text{ symmetry} \qquad \text{anticommutes}$$

This form is actually pretty generic if we have a periodically-driven Hamiltonian with a large on-site $\sum_i S_i^{\chi}$ term that dominates during the period of the drive -- just go into the interacting picture.

Consider a periodically driven system with unitary map

$$U_F = \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt}$$

Consider going into a new frame

$$e^{A_1}U_F e^{-A_1} = e^{A_1} \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt} e^{-A_1}$$
$$= \prod_i X_i e^{-A_1} e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt} e^{-A_1}$$
Assume A to be antisymmetric

Consider a periodically driven system with unitary map

$$U_F = \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt}$$

Consider going into a new frame

$$e^{A_1}U_F e^{-A_1} = e^{A_1} \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t))dt} e^{-A_1}$$

$$= \prod_i X_i e^{-A_1} e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t))dt} e^{-A_1}$$
Treat as new Floquet drive;
Pick $A_1 = \frac{-i}{2} \int_0^T \epsilon V(t)dt$

$$= \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD'(t) + (\epsilon^2 T)V'(t))dt}$$

Consider a periodically driven system with unitary map

$$U_F = \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt}$$

Rinse and repeat

$$e^{A_2}e^{A_1}U_F e^{-A_1}e^{-A_2} = e^{A_2} \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD'(t) + (\epsilon^2 T)V'(t)) dt} e^{-A_2}$$

$$e^{A_p} \dots e^{A_2} e^{A_1} U_F e^{-A_1} e^{-A_2} \dots e^{-A_p} = \cdots$$

Consider a periodically driven system with unitary map

$$U_F = \prod_i X_i e^{-i\mathcal{T} \int_0^T (JD(t) + \epsilon V(t)) dt}$$

In appropriate new frame,

$$\prod_{i}^{p} e^{A_{i}} U_{F} \prod_{i}^{p} e^{-A_{i}} \approx \prod_{i} X_{i} e^{-iJD'T} + O(e^{-\epsilon T})$$

If *D*'supports spontaneous symmetry breaking of *Z*₂, approximate, long-lived Floquet eigenstates are

macroscopic cat states.

I.e. this is a Prethermal Time Crystal.

Conclusion

Combining notions of **locality**, **large energy scale**, and a **suitably chosen frame of reference** can yield bounds on dynamics, effective physics, long-lived transient dynamics, transient dynamical phases of matter etc.

Outlook:

- Effective prethermal Hamiltonians for long-range systems?
- Quasi-periodically driven many-body systems?
- Quantum KAM kind of statements?

- ...

Thank you!

Dima Abanin

Francois Huveneers

Comm. Math. Phys. 354, 809-827 (2017) Phys. Rev. B 95, 235110 (2017) Phys. Rev. Lett. 120, 200601 (2018)