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- Review some previous rigorous results pertaining to slow heating and
prethermalization in periodically-driven (Floquet) quantum many-body
systems

- Present some newer results regarding bounds on heating in
periodically-driven quantum many-body systems with long-range
interactions (some new technical tools required)

- More generally, highlight the tools and techniques used that might be
illuminating in understanding thermalization processes / finding new
dynamical regimes and new dynamical phases in other kinds of systems
(not necessarily only driven)



Motivation: why periodic driving?
Floquet Engineering

Floquet Tls
Floquet SPTs
Floquet FCls
Floquet FQH..

Lindner, Refael,

Moessner, Galitski,
Rudner, Kitagawa,
Artificial Gauge Fields  Grushin, Lee, etc...

(Cold atoms)

Jotzu et al, Aidelsburger et al,

Kapitza Pendulum  Light induced

Kapitza superconductivity
Fausti et al, Mitrano et al,

Novel dynamical phases of matter
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I Floquet Time Crystals
I Else, Bauer, Nayak, Khemani, Sondhi, von

05 1 Keyserlingk, Choi et al, Zhang et al, etc...
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- Systems are generically interacting. In fact some of the desired
Floquet physics require interactions

- Upon breaking of energy conservation + interactions, "heat
death"?

Hit)=H({t+T) 4
U(t) — Te- fot dtlH(tl) A Q /

I
pa(®) = Jim Trs[U@TpoU (O] = 7~ @)




However, a challenge:

- Systems are generically interacting. In fact some of the desired
Floquet physics require interactions

- Upon breaking of energy conservation + interactions, "heat
death"?

Hit)=H({t+T)
U(t) — Te- fot dtIH(tl) A ©

I
pa(®) = Jim Trs[U@TpoU (O] = 7~ @)

- Is this always true? No, strong disorder can prevent it (many-body
localization)

- More generally, what are the heating rates in a driven system? What are
the timescales of thermalization?

- How long-lived are transient dynamical phenomena?



Set-up (Short-range for now)
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- Consider periodically driven many-body lattice system
H(t) =Hy+gV(t)

- Bounded local Hilbert space e.g. spins, fermions

- Local interactions e.g. Jo7 67, 1, ho?, go? f(¢), ...

- Also consider the regime w > [, g, h



Warm-up
(Linear Response, Fermi's Golden Rule)
- H(t) =Hy+ g V(t)
- Consider beginning from a single eigenstate |n) of H,

- V(t) has harmonics +w
- Transition rate:

M) = g2 ) [nlVIm)28(w = By + Ey)



Warm-up

(Linear Response, Fermi's Golden Rule)
- H(t) =Ho + g V(t)
- Consider beginning from a single eigenstate |n) of H,

- V(t) has harmonics +w
- Transition rate:

P(@) = g% ) [nlVIm)8(e — By + En)

m
Trick: Insert commutator with H: Abanin. De Roeck. Huveneers. PRL
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Warm-up
(Linear Response, Fermi's Golden Rule)

2

(1o, [Ho, = 10, V11| ™| m)
['(w) = g° z — 5(w—Ep + Ep)

) 1
w: Largest scale, suppression~ —

Nested commutators:
L |Rhiisr + hijm1,vi] = Riger + Ry
2| Rijier + i1, Ryar + Ry = higq + Rizq e R+ R
3.Many local terms generated...

p. # Terms ~ p!



Warm-up

(Linear Response, Fermi's Golden Rule)
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w: Largest scale, suppression~ —
Nested commutators:
Size( )A
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Warm-up
(Linear Response, Fermi's Golden Rule)

[(w) = g°

Intuition:

A
Size(p)
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|

Size of term < (p—)
wP

v

cw

Optimalp, = Nw)<e J D,




An aside: Off-diagonal matrix elements in ETH
Srednicki's ansatz:
S
(n[Vim) = e 2fy (w)Rym
How does f;(w) behave?

Look at weight contained in high frequencies:

[(n|V|m)|* = oodw 02751 |fy(w)|” = oodw fr (@)’
m:En—ZEm>w / @ / V Jw V

(0 0]
2 —
Insert commutators j do |fy ()| <~e
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An aside: Off-diagonal matrix elements in ETH
Srednicki's ansatz:
S
(n[Vim) = e 2fy (w)Rym
How does f;(w) behave?

Look at weight contained in high frequencies:

[(n|V|m)|* = oodw 02751 |fy(w)|” = oodw fr (@)’
m:En—ZEm>w / @ / V Jw V

(0 0]
2 —
Insert commutators j do |fy ()| <~e
w

w

T

Cc

fr(w) A

Locality implies exponential decay




Can result be made non-perturbative?
(i.e. finite driving amplitude g)



H(t) =Hy+V(t)

Can we understand dynamics in terms of a static Hamiltonian H¢f?
Floguet Theorem + Magnus expansion:

T

1 1 T ty

Presumably works well for small T or large w.



Effective Hamiltonians
H(t) = Hy + V(t)

Can we understand dynamics in terms of a static Hamiltonian H¢f?
Floquet Theorem + Magnus expansion:

1 T
Hepr = Tf H(t)dt+— dtlf dt,[H(t,), H(t,)] +

Presumably works well for small T or large w.

Do they matter?

If we can ignore them, then this is an avoidance of Floquet
thermalization to infinite temperature. These terms must matter
generically.

Analysis of series: Mori, Kuwahara, Saito, PRL (2016), AOP (2016)



Effective Hamiltonians

H(t) = Hy +V(t)
Go into a suitably chosen rotating frame
H'(t) = Q)" (Ho + V(t) — 10,)Q (1)
Choose Q(t) = exp[(Sy(t) + S2(t) + S5(6) + =+ S(1))]

NN R

Book-keeping: ~ ~ ~ =3 o

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) =Hy+ V(t)

Go into a suitably chosen rotating frame

H'@®) = Q) (Hy + V(@) —i9,)Q(t)
Choose Q () = exp[(S; (£) + S5 () + S3(t) + = + Sp(D))]

NN R

1 1 1

A~ —

Book-keeping: ~ 7 ~ 3 ~— —

Expand H'(t) and group terms in powers of%

(0)-th order: Hy +V
(1)-st order: V(t) — i 9,5,
(2)-nd order: [S;, Hy + V()] — % [S1,0:51] — 8.5,

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) =Hy+ V(t)

Go into a suitably chosen rotating frame

H'@®) = Q) (Hy + V(@) —i9,)Q(t)
Choose Q () = exp[(S; (£) + S5 () + S3(t) + = + Sp(D))]

NN R

1 1 1

A~ —

Book-keeping: ~ 7 ~ 3 ~— —

Expand H'(t) and group terms in powers of%

(0)-th order: Hy +V Solve S, (t), sum of local terms
(1)-st ordé
(2)-nd order: [S;, Hy + V()] — % [S1,0:51] — 8.5,

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) =Hy+ V(t)

Go into a suitably chosen rotating frame

H'(t) = Q) (Ho + V(t) —id,)Q(t)
Choose Q(t) = exp[(Sy(t) + S5 (t) + S3(t) + -+ + Sy ()]

NN R

1 1 1

Book-keeping: ~ 7 ~ 3 ~— -

. 1
Expand H'(t) and group terms in powers of;
(0)-th order: Hy +V Extract time-indept piece,

(1)-st order: V(t) —id.S _ / renormalizes Hamiltonian
(2)-nd order([S;, Hy + V()] — % [S1,0:5:D=71 .5,
Solve S, (t) to absorb oscillating

piece. Sum of local but longer
range terms.

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) = Hy +V(t)

Go into a suitably chosen rotating frame

H'(t) = QO (Ho + V() —i0,)Q(1)
Choose Q(t) = exp[(S1(t) + S5 (t) + S5(t) + ++ + S, (1))]

NN R

Book-keeping: ~ 7 ~ 3 ~— —

Expand H'(t) and group terms in powers of%

(0)-th order: Hy +V
(1)-st order: V(t) — i 9,5,
(2)-nd order: [Sy, Hy + V()] - % [S1,0:51] — 10,5,

Higher orders involve more and nested commutators.
Number of local terms grows as n! again. Suppression as w™

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) =Hy+ V(t)

Go into 'best' rotating frame:

H'(t) = Hypr + 6V (1)

w

— _C_

Hy + V + corrections ~e J
Quasi-local Quasi-local

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Effective Hamiltonians

H(t) =Hy+ V(t)

Go into 'best' rotating frame:

H'(t) @ SV (t)

w

— _C_

Hy + V + corrections ~e J
Quasi-local Quasi-local

7 w
Dynamics of local observables given by U(t) = e~ Hefft fort, <~ e"J

Implies prethermalization to H, ¢, for long times.
Results from locality + high frequency

Abanin, De Roeck, WWH, Huveneers, CMP (2017)
Abanin, De Roeck, WWH, Huveneers, PRB (2017)



Some numerics (unpublished)
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How about systems with long-range
interactions ~ —?

ra’



Many synthetic quantum systems have long-
range interactions

A

Long-range interactions: faster entanglement generation, faster
preparation of states, possible new phases of matter (with or without
driving).

But also, curse: more heating?
Can we understand heating rates in such driven systems? Is there
prethermalization?



Set-up (with Long-range interactions)

WWH, Protopopov, Abanin, PRL (2018)

- Consider periodically driven many-body lattice system with w > J, h, ...
- Bounded local Hilbert space e.g. spins, fermions in d-dim
- Long range interactions

H ZZ%OU +K2ﬁi c0;+9 Zchos(wt)
T i x

. d . -
Con5|der5 < a < d.To ensure thermodynamic stability, assume
/i; random variable with zero mean and bounded higher moments.



Jii S
H=Z%Oij+iczhi'Gi+ngxC05(wt) §<a£d
ij Y i X

Look at energy absorption at high temps (low f8)

dE
— =2g%0w%d(w,B)

o(w,8) = 2——|<n|V|m>| 8(En — En — )

Weight of disorder averaged spectral function at high frequencies

o([w]) = (f dw’a(oo’, B))



Tricks

[w]) = j —|(n|V|m)|26(En—Em — w))

Zy
\ 1) Insert in nested commutators of H,,

2) Delta function picks out subset of states.
L|ft restriction to let all pairs contribute;
becomes trace:

< Zii}, (e ([v. 2), -], B[V, 1], H]®))
7 Bw 3. Use cyclicity of trace
— s [ (Vv -, m) )|

WWH, Protopopov, Abanin, PRL (2018)



Result

7(w]) < g 35 [ Ve Ol O )]
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Disorder averaging forces links u to be at least paired. This makes relevant
terms have denominators

1
~ —wheren > 2
Tu

effectively "longer-ranged". Clever resummation of the infinite terms gives

w

o(Jw]) < NmBwe B

WWH, Protopopov, Abanin, PRL (2018)



Result
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Disorder averaging forces links u to be at least paired. This makes relevant
terms have denominators

1
~ —wheren > 2
Tu

effectively "longer-ranged". Clever resummation of the infinite terms gives

w o
o(lw]) < NmBwe B Exponentially suppressed

heating rate!
WWH, Protopopov, Abanin, PRL (2018)




Can result be made non-perturbative?
s there a prethermal Hamiltonian?



Numerics

Hit) = Z %(Jzzafajz- + Jex0705) + Z hso?

ij W

+g[1—20(t —T/2)] Z(Uf +0?), Step function drive
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Long-lived prethermal plateau

See also Francisco, ..., Nayak, Yao (arXiv:1708.01620) WWH, Protopopov, Abanin, PRL (2018)



Numerics

Hit) = Z %(Jzzafajz- + Jex0705) + Z hso?

ij W

+g[1—20(t —T/2)] Z(Uf +0?), Step function drive
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See also Francisco, ..., Nayak, Yao (arXiv:1708.01620) WWH, Protopopov, Abanin, PRL (2018)



Locality and large energy scale (driving frequency) leads to
exponentially suppressed heating rate and prethermalization in
periodically driven many-body systems, with short or long-range
interactions. This requires choosing an appropriate frame of reference
to view the system from. Note that the "large" scale does not mean
large compared to the unphysical many-body bandwidth.

This story is actually a lot more general.

Generically, one can consider different iterative frame transformations
that might yield different effective Hamiltonians and effective dynamical
behavior.



Schrieffer-Wolff transformation

If Hyhas a low energy sector separated by a spectral gap, can
find a rotated frame of reference where Hy + €V has same low
energy sector with some effective dynamics

eS|Hy + eV]e™ = PoH,; Py + -+

eV mixes

\ Py Po

Heff — HO + EP()VPO + .-




Near "integrable" systems

Say H has an almost conserved charge e.g. U(1) charge )., 57
H=]ZSiZ+nD+EV >0, €
i

Here D) commutes with charge, I/ does not.

Can find a frame of reference e°such that

€
H =e¢°He™® =]ZSiZ +7D +e TV
L

Abanin, De Roeck, WWH, Huveneers, CMP (2017)



Near "integrable" systems

Say H has an almost conserved charge e.g. U(1) charge )., 57
H=]ZSiZ+nD+eV >0, €
i

Here D) commutes with charge, I/ does not.

Can find a frame of reference e°such that

H' =e°He™ =]ZSiZ + 1D’ +'
i

Exponentially suppressed!

Implies dressed charge e > S? e’is conserved for exponentially long times

Abanin, De Roeck, WWH, Huveneers, CMP (2017)



A different decomposition for some Floquet drive?

Consider a periodically driven system with unitary map
Uy = e—ig-ZiSfCe—iT [ UD()+ev(e))at " HXL_ o—iT [ Upo)+ev(e))at
i

/o4 N\

Z, symmetry anticommutes

This form is actually pretty generic if we have a periodically-driven
Hamiltonian with a large on-site ); Sj*term that dominates during the
period of the drive -- just go into the interacting picture.



A different decomposition for some Floquet drive?

Consider a periodically driven system with unitary map
Up = HXl- o—iT Iy UD(0)+ev(D))at
i

Consider going into a new frame

el oA = ¢t l_[Xi o—iT Jy UD(+ev(D)at,, 4,
i

_ HXi A1 g=iT o (UD(O)+ev(®)dt 4,

i \
Assume A to be antisymmetric



A different decomposition for some Floquet drive?

Consider a periodically driven system with unitary map
Up = HXL- o—iT Iy UD(0)+ev(D))at
i

Consider going into a new frame

el oA = ¢t l_IXi o—iT Jy UD(+ev(D)at,, 4,
i

o—A1p=iT fOT(]D(t)+eV(t))dte—A1

Treat as new Floquet drive;
. =i (T
Pick 4, = ?fo eV (t)dt

— Hxi o iT foT(]D’(t)+(eZT)V’(t))dt

i



A different decomposition for some Floquet drive?

Consider a periodically driven system with unitary map
Up = HXl- o—iT Iy UD(0)+ev(D))at
i

Rinse and repeat
. T
ed2 041 UFe—Ale—Az = o2 l_IXi e~ tT Jo (]D'(t)+(62T)V’(t))dte—AZ

i

el etetilUpe e 2 e = .



A different decomposition for some Floquet drive?

Consider a periodically driven system with unitary map
Up = HXL- o—iT Iy UD(0)+ev(D))at
i

In appropriate new frame,
p p

[ [erve| [enm] x4 ogemery
l

[ [

If D'supports spontaneous symmetry breaking of Z,
approximate, long-lived Floquet eigenstates are
macroscopic cat states.

l.e. this is a Prethermal Time Crystal.

Else, Bauer, Nayak, PRX



Combining notions of locality, large energy scale, and a suitably
chosen frame of reference can yield bounds on dynamics, effective

physics, long-lived transient dynamics, transient dynamical phases of
matter etc.

Outlook:
- Effective prethermal Hamiltonians for long-range systems?
- Quasi-periodically driven many-body systems?
- Quantum KAM kind of statements?



Dima Abanin

Thank you!
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