
  

Dynamics of entanglement in spin chains 
with diffusive transport

Tibor Rakovszky

Collaboration with Curt von Keyserlingk and Frank Pollmann

KITP, Santa Barbara, 05.09.18

Fakultät für Physik, Technische Universität München



  

Thermalization: information of initial state is lost locally

“Scrambling” of information Growth of entanglement

Spreading of local operators

remains a pure state

for subsystems LA << L



  

How does entanglement grow?
has extensive von Neumann entropy

→ takes time to build up from short-range correlated initial state 

Integrable systems / CFT (relax to generelized Gibbs) → quasiparticle picture 

Calabrese, Cardy: JSTAT (2005)

What about systems with no well-defined quasiparticles?

Linear entanglement growth is more generic – see: Kim, Huse: PRL (2013)

How to describe? Are there other universal features?



  

Minimal model: local random unitary circuits

Keep unitarity, locality (+ conservation laws), throw away all other structure

Entanglement growth (from product state): linear + KPZ fluctuations
Nahum Ruhman, Vijay, Haah: PRX (2017);   Zhou, Nahum (arXiv 1804.09737)

Can be interpreted as ‘energy’ of a directed polymer / minimal cut
Jonay, Huse, Nahum (arXiv 1803.00089)

Related to operator spreading
Ho, Abanin: PRB (2017) 
von Keyserlingk, TR, Pollmann, Sondhi: PRX (2018);   Nahum, Vijay, Haah: PRX (2018)

How is this affected by the presence of slow diffusive modes?



  

Random circuit model with conserved U(1) charge

Each dot contains N quibits:

Local charge density:

Haar random

TR, von Keyserlingk, Pollmann: PRX (2018)

See also: Khemani, Vishwanath, Huse: PRX (2018)

obeys random walk / diffusion on average at all times

Shows up both in transport for inhomogenous states 
and in fluctuations for a global quench - see: Lux, Müller, Mitra, Rosch: PRA (2014)



  

Neglecting fluctuations leads to a simple growth rule 
for the entanglement in the large N limit

Assume that the total charge on x,x+1 is sharply peaked

In the limit N → ∞ this is true e.g. in local equilibrium

Evolution of half-chain entropy across a cut at position x:

For constant μ this coincides with the model of Nahum el. al. (PRX, 2017)

Space-time dependent surface growth / directed polymer problem



  

For domain wall, diffusion implies t1/2 entanglement growth

Subadditivity + local eq. → 

Domain wall:

N = ∞



  

For domain wall, diffusion implies t1/2 entanglement growth

Subadditivity + local eq. → 

Domain wall:

N = 1



  

Domain wall quickly approaches local equilibrium



  

Similar scaling appears for more general domain walls



  

‘Bumps’ smooth out at long times

Charge-density wave:



  

Slow growth of entanglement for domain wall is present in a 
deterministic, periodically driven spin chain



  

Diffusion can slow down entanglement growth even for 
homogenous initial states, due to charge fluctuations

Subsystem density matrix is block-diagonal in charge:

Infinite temperature state: pQ is binomial → 



  

Diffusion can slow down entanglement growth even for 
homogenous initial states, due to charge fluctuations



  

What about states with large initial fluctuations?

Contrived example: put a cat state on left / right halves of the chain

How do the different entanglement entropies grow in the middle?
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Conclusions and outlook

● Random circuits are a useful toy model for chaotic dynamics

● Different time regimes: 

● ‘Coarse-grained’ limit yields exact EOM for the entanglement

C. V. Keyserlingk F. Pollmann

1) Local equilibration
2) Charge transport → bumpy entanglement profile
3) Bumps smooth out 

● Space-time dependent surface growth model / minimal cut

● Charge-fluctuations can also lead to slower growth



  

At longer times the entanglement profile smooths out



  

Main features are captured by ‘minimal cut’ picture

‘Energy’ of a cut:

Entanglement = minimum of energy over cuts



  

Calculation of average purity can be mapped to 
a classical partition function

2 copiesSwaps copies on subsystem A
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Calculation of average purity can be mapped to 
a classical partition function

2 copiesSwaps copies on subsystem A

Six local states:

+ empty
Interactions terms arise at each gate:

+ boundary conditions from



  

Spatial spreading is ballistic at the edges



  

Diffusive spreading becomes clearer at finite filling
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