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Quantum Physics and Computational Complexity

I Local Hamiltonian problem: it’s QMA-complete to decide the
ground state energy of a local H up to inverse poly precision.

I Proof uses universal computation in ground state of local H,

|ψt〉 = Ut ...U1|0n〉 −→ |Ψhist〉 =
1√

T + 1

T∑
t=0

|t〉|ψt〉

I Can this complexity of ground states persist at finite temperatures?

I |Ψhist〉 used to show that (ideal, noiseless) adiabatic computation
can be universal. Can this construction be made fault-tolerant?

I Today: we combine |ψhist〉 with self-correcting topological quantum
memories, thereby encoding universal quantum computation into a
metastable Gibbs state of a k-local Hamiltonian.



Thermally Stable Universal Adiabatic Computation
I Hamiltonian enforces circuit constraints and code constraints:

Hfinal = Hcircuit + Hcode

I Begin in (noisy) ground state of Hinit and linearly interpolate:

H(s) = (1− s)Hinit + s Hfinal

I Noise model: low temp thermal noise, intrinsic control errors

I Hfinal has a metastable Gibbs state, in the sense of a self correcting
quantum memory with exponentially long lifetime.

I Goal is to prepare the metastable Gibbs state of Hfinal so that
readout + classical decoding yields the result of the computation.

I H(s) is k-local for some k = O(1), with O(1) interaction degree and
at most poly(n) terms. (Proof of principle with large overheads)
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Quantum Ground State Computing

I Highly entangled states look maximally mixed with respect to local
operators. How to check quantum computation with local H?

I Kitaev solved this problem by repurposing an idea from Feynman to
entangle the time steps of the computation with a “clock register”:

|ψT 〉 = UT ...U1|0n〉 −→ |Ψhist〉 =
1√

T + 1

T∑
t=0

|t〉|ψt〉

I These “history states” can be checked by a local Hamiltonian:

Hcirc = |0〉〈0| ⊗
(∑

|1〉〈1|i
)

︸ ︷︷ ︸
input at t = 0

+
T∑
t=0

Hprop(t) , |t〉 = | 11...1︸ ︷︷ ︸
t times

00...0〉

Hprop(t) =
1

2

(
|t〉〈t| ⊗ I + |t − 1〉〈t − 1| ⊗ I − |t〉〈t − 1| ⊗ Ut − |t − 1〉〈t| ⊗ U†

t

)



Analyzing Circuit Hamiltonians

I Analysis: propagation Hamiltonian is unitarily equivalent to a
particle hopping on a line. Define a unitary W ,

W =
T∑
t=0

|t〉〈t| ⊗ Ut ...U1

I W transforms Hprop into a sum of hopping terms,

W †HpropW =
T∑
t=0

1

2
(|t〉〈t|+ |t − 1〉〈t − 1| − |t〉〈t − 1| − |t − 1〉〈t|)

I Diffusive random walk: mixing time ∼ T 2, spectral gap ∼ T−2.



Universal Adiabatic Computation

I Begin in an easily prepared ground state and slowly change H while
remaining in the ground state by the adiabatic principle,

H(s) = (1− s)Hinit + s Hfinal , 0 ≤ s ≤ 1

I Run-time estimate: ∼ ‖Ḣ‖/∆−2min, where ∆ = mins gap(H(s)).

I Universal AQC: Hfinal = Hinit + Hprop

I Monotonicity argument shows that the minimum spectral gap occurs
at s = 1, so ∆ ≈ T−2 and overall run time is polynomial in n,T .

I Perturbative gadgets enable universal AQC with 2-local H,

H =
∑
i

hiZi +
∑
i

∆iXi +
∑
i,j

Ji,jZiZj +
∑
i,j

Ki,jXiXj



History States with Local Clocks

I Instead of propagating every qubit according to a global clock,
assign local clock registers to the individual qubits,

|τ 〉 = |t1...tn〉 , |Ψhist〉 =
∑

τ valid

|τ 〉|ψ(τ )〉

I Makes history state Hamiltonians more realistic for 2D AQC
(Gosset, Terhal, Vershynina, 2014. Lloyd and Terhal, 2015).



Classical Self-Correcting Memories

I Ferromagnets and repetition codes: the Ising model

I 1D Ising model: thermal fluctuations can flip a droplet of spins,
energy cost is independent of the size of the droplet

I 2D Ising model: energy cost of droplet proportional to boundary,

I At temperature T droplets of size L are supressed by e−L/T .
Ferromagnetic order at T < Tc , magnetization close to ±n.

I Robust storage of classical information: lifetime scales exponentially
in the size of the block. Hard disk drives work at room temperature.



Topological Quantum Error Correction

I Quantum codes require local indistinguishability =⇒ topological
order (toric code) instead of symmetry-breaking order (Ising model).

Hcode = −
∑
s∈S

Hs , S = { stabilizer generators }

I 2D toric code analogous to 1D Ising model: thermal fluctuations
create pairs of anyons connected by a string. No additional cost to
growing the string =⇒ constant energy cost for a logical error.

I 4D toric code: logical operators are 2D membranes, energy cost
scales like the 1D boundary so errors supressed by e−L/T .

I Open question: finite temperature topological order in 3D?



Challenges in Adiabatic Fault-Tolerance

I Past approaches replace bare operators X ,Z with logical operators
XL,ZL. 4-qubit code suppresses 1-local thermal noise (JFS’05).

I Challenge: Codes with macroscopic distance have high-weight
logical operators that don’t correspond to local Hamiltonian terms.

I Solution: use circuit Hamiltonians for gate model fault-tolerance
schemes with only transversal operations and local measurements.

I Consequence 1: circuit-model fault-tolerance requires
parallelization =⇒ spacetime construction with local clocks.

I Consequence 2: there can be no universal set of transversal gates
=⇒ history state must include measurement and classical feedback.



Challenges in Adiabatic Fault-Tolerance

I Challenge: What is the noise model?

I Solution: (1) weak coupling to a Markovian thermal bath, (2)
Hamiltonian coupling errors , (3) probabilistic fault-paths.

I Self-correcting memories protect against thermalization, and even
turn it into an advantage by using it to erase information.

I Protection from Hamiltonian coupling errors and probabilistic
fault-paths relies on gate model FT and self-correcting clocks.



Self-Correcting History States

I Each logical qubit Q1, ...,Qn in the history state is made of physical
qubits qi,1, ..., qi,m. Each physical qubit qi,j has its own clock ti,j .

I Just as in the classical case, both the computation and the code
stabilizers are enforced by local Hamiltonian terms.

H =
∑
τ

Hprop(τ ) +
∑
τ

Hcode(τ )

I Hprop needs to consist of local gates, and Hcode needs to
accomodate the propagation of the circuit without frustration.

I Apply to any FT scheme with local code checks and local operations
e.g. 2D surface code with magic state injection.

I Gate teleportation uses logical measurement and classical
post-processing, which will all be part of the history state.



Transversal Unitaries in a Local Hamiltonian

I Transversal operations: U[Qlogical] =
⊗

q U[qphysical]

I Advancing all clocks in a logical qubit at once would not be local
=⇒ local clocks must be advanced independently by local terms,

HU [tQi ,Qi ] −→
∑
qi∈Qi

Hprop[tqi , qi ]

I Need to protect the clocks from getting far out of sync =⇒
Hprop[tqi , qi ] checks the neighboring clocks before advancing ti , qi

I Challenge: advancing clocks one at a time would violate terms in
Hcode . We solve this with “dressed stabilizers.”



Dressing stabilizers to avoid frustration

I We need to tell the stabilizers “what time it is” so that they can
accomodate diffusive propagation without frustration,

|ts1 , ..., tsm〉〈ts1 , ..., tsm | ⊗ Hs(ts1 , ..., tsm)

I Stabilizers acting on “staggered” time configurations rotate the
qubits that are lagging behind (or getting ahead),

|ts〉〈ts | ⊗ Hs(t) :=

(⊗
k∈s

|tk〉〈tk |tk

)⊗(∏
tk

U†tk ,t [qk ]

)
Hs

(∏
tk

Utk ,t [qk ]

)

I Spacetime view of advanced / retarded potentials in E&M

I Dressing for two qubit gates intertwines stabilizers from distinct
logical qubits, but terms remain k-local.

I Suffices to limit staggering to constant window c (speed of light).
Locality and number of terms grows exponentially in c .



Everything is unitary in a larger Hilbert space

I Replace projective measurement Π0 + Π1 = I of the physical qubits
with coherent unitaries onto the classical ancillas:

|ψ〉|0〉 −→ Π0|ψ〉|0〉+ Π1|ψ〉|1〉

I Each physical qubit is measured by a “classical wire”. The classical
wire is a logical ancilla encoded in the repetition code.

I Tip of the wire is very pointy (local, bounded degree interactions),
then grows like a concatenated tree to become macroscopic.

I Classical post-processing is global and takes poly time. The rest of
the computation “waits around” for this to be done.



The 4D spacetime view of active error correction

I Consider the history state of a fault-tolerant quantum computer e.g.
surface code qubits connected to a classical computer.

I Instead of a code Hamiltonian, such a scheme depends on actively
measuring and correcting stabilizers.

I There is no energetic protection of the qubits, but there is energetic
protection from the materials in the classical computer.

I Active error correction is possible because we dump entropy from
quantum computers into classical self-correcting memories.

I In our case it suffices for Hcode to be a repetition code acting on the
(coherent) classical ancilla.



Analysis of the rotated Gibbs state

I The entire Hamiltonian is unitarily equivalent to a diffusing
membrane and a static code Hamiltonian, the dressing disappears:

W =
∑

τvalid

U(τ )|τ 〉〈τ | , W †HW = Hmembrane ⊗ I + I ⊗ Hcode

I Put time configurations on a circle (U†1 ...U
†
TUT ...U1), symmetry

makes all valid time configurations equally likely in every eigenstate.

I Initialization: classical ancillas in logical 0̄ state protected by
repetition Hcode, computational qubits in arbitrary state.

I Metastable Gibbs state of W †HW is uniform over times, maximally
mixed on computational qubits, and close to 0̄ on ancillas.



Analysis of the real Gibbs state

I Diagonal elements of the thermal density matrix of H in the time
register basis have the form

|τ 〉〈τ | ⊗ U(τ )

(
ρencoded

qubits
⊗ ρencoded

ancillas

)
U†(τ )

I FT circuit U(τ ) coherently measures and corrects syndromes to
initialize the quantum code and evolve the computation.

I Correct operation of U(τ ) depends on dumping entropy into the
thermally stable classical logical ancillas.

I Thermal stability of the ancillas is unaffected by W (e.g. Davies
generators only depend on the spectral properties of H).

I Intrinsic control errors in local H terms: ‖Wactual −Wideal‖ is small
because W is a fault-tolerant circuit.



Summary and Outlook

I Universal quantum computation in a finite temperature state of a
k-local Hamiltonian with polynomial overhead.

I 4D self-correcting memory from the history state of 3D FT-QC.
Relates planar FT architectures to self-correction in 3D.

I Lower bounding the gap of Hmembrane is an open problem in
mathematical physics; to obtain a tractable gap analysis we consider
nonuniform distributions of time configurations.

I Benefit of applying the scheme to smaller geometrically local
architectures that may not be fully thermally stable?

I Thank you for your attention!


