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Quantum Physics and Computational Complexity

Local Hamiltonian problem: it's QMA-complete to decide the
ground state energy of a local H up to inverse poly precision.

Proof uses universal computation in ground state of local H,
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Can this complexity of ground states persist at finite temperatures?

|[Whist) used to show that (ideal, noiseless) adiabatic computation
can be universal. Can this construction be made fault-tolerant?

Today: we combine |thst) with self-correcting topological quantum
memories, thereby encoding universal quantum computation into a
metastable Gibbs state of a k-local Hamiltonian.



Thermally Stable Universal Adiabatic Computation

» Hamiltonian enforces circuit constraints and code constraints:

Hﬁnal - Hcircuit + Hcode

» Begin in (noisy) ground state of Hi,;; and linearly interpolate:
H(S) = (1 - S)Hinit + s Hﬁnal
» Noise model: low temp thermal noise, intrinsic control errors

» Hgna has a metastable Gibbs state, in the sense of a self correcting
quantum memory with exponentially long lifetime.

» Goal is to prepare the metastable Gibbs state of Hgya) so that
readout + classical decoding yields the result of the computation.

> H(s) is k-local for some k = O(1), with O(1) interaction degree and
at most poly(n) terms. (Proof of principle with large overheads)
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» Introduction and background
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Quantum ground state computing

Universal adiabatic computation

Local clocks: spacetime circuit Hamiltonians
Self-correcting memories

» Quantum computation in thermal equilibrium
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Local circuit Hamiltonians = transversal operations
Transversal operations = local clocks

Coherent classical post-processing

Self-correction in spacetime: dressing stabilizers

The 4D Fault-tolerant quantum computing laboratory
Analysis: symmetry and the global rotation

Summary and Outlook



Quantum Ground State Computing

> Highly entangled states look maximally mixed with respect to local
operators. How to check quantum computation with local H?

» Kitaev solved this problem by repurposing an idea from Feynman to
entangle the time steps of the computation with a “clock register”:
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» These “history states” can be checked by a local Hamiltonian:
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Analyzing Circuit Hamiltonians

» Analysis: propagation Hamiltonian is unitarily equivalent to a
particle hopping on a line. Define a unitary W,
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> W transforms H,.op into a sum of hopping terms,
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» Diffusive random walk: mixing time ~ T2, spectral gap ~ T 2.




Universal Adiabatic Computation

Begin in an easily prepared ground state and slowly change H while
remaining in the ground state by the adiabatic principle,

H(S):(l_s)Hinit""SHﬁnal ) OSSS 1
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Run-time estimate: ~ ||H||/A 2, where A = ming gap(H(s)).

Universal AQC: Henal = Hinit + Hprop

Monotonicity argument shows that the minimum spectral gap occurs
at s=1, so A ~ T2 and overall run time is polynomial in n, T .

Perturbative gadgets enable universal AQC with 2-local H,

H= Z hiZ; + Z A X+ Z JijZiZi + Z Ki j XiX;
i i i iJ



History States with Local Clocks

> Instead of propagating every qubit according to a global clock,
assign local clock registers to the individual qubits,
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» Makes history state Hamiltonians more realistic for 2D AQC
(Gosset, Terhal, Vershynina, 2014. Lloyd and Terhal, 2015).

Instead of a hopping particle, the
Hamiltonian is unitarily equivalent to
the diffusion of a string or membrane.



Classical Self-Correcting Memories
Ferromagnets and repetition codes: the Ising model

1D Ising model: thermal fluctuations can flip a droplet of spins,
energy cost is independent of the size of the droplet

2D Ising model: energy cost of droplet proportional to boundary,

At temperature T droplets of size L are supressed by e
Ferromagnetic order at T < T, magnetization close to +n.

—L/T.

Robust storage of classical information: lifetime scales exponentially
in the size of the block. Hard disk drives work at room temperature.



Topological Quantum Error Correction

» Quantum codes require local indistinguishability = topological
order (toric code) instead of symmetry-breaking order (Ising model).

Heode = — Z Hs , S ={ stabilizer generators }
seES

» 2D toric code analogous to 1D Ising model: thermal fluctuations
create pairs of anyons connected by a string. No additional cost to
growing the string = constant energy cost for a logical error.
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» 4D toric code: logical operators are 2D membranes, energy cost
scales like the 1D boundary so errors supressed by e~ %/T.

» Open question: finite temperature topological order in 3D?



Challenges in Adiabatic Fault-Tolerance

Past approaches replace bare operators X, Z with logical operators
Xi, Z1. 4-qubit code suppresses 1-local thermal noise (JFS'05).

Challenge: Codes with macroscopic distance have high-weight
logical operators that don't correspond to local Hamiltonian terms.

Solution: use circuit Hamiltonians for gate model fault-tolerance
schemes with only transversal operations and local measurements.

Consequence 1: circuit-model fault-tolerance requires
parallelization = spacetime construction with local clocks.

Consequence 2: there can be no universal set of transversal gates
= history state must include measurement and classical feedback.



Challenges in Adiabatic Fault-Tolerance

Challenge: What is the noise model?

Solution: (1) weak coupling to a Markovian thermal bath, (2)
Hamiltonian coupling errors , (3) probabilistic fault-paths.

Self-correcting memories protect against thermalization, and even
turn it into an advantage by using it to erase information.

Protection from Hamiltonian coupling errors and probabilistic
fault-paths relies on gate model FT and self-correcting clocks.



Self-Correcting History States

Each logical qubit @1, ..., @, in the history state is made of physical
qubits g; 1, ..., q;,m.- Each physical qubit g;; has its own clock t; ;.

Just as in the classical case, both the computation and the code
stabilizers are enforced by local Hamiltonian terms.

H= Z HprOp(T) + Z Heode(T)

Hprop Needs to consist of local gates, and Hcoge needs to
accomodate the propagation of the circuit without frustration.

Apply to any FT scheme with local code checks and local operations
e.g. 2D surface code with magic state injection.

Gate teleportation uses logical measurement and classical
post-processing, which will all be part of the history state.



Transversal Unitaries in a Local Hamiltonian
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Transversal operations: U[Qiogicall = &, Uldphysicall
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Advancing all clocks in a logical qubit at once would not be local
= local clocks must be advanced independently by local terms,

HU[tQm QI] — Z Hprop[t i qi]
GEQ;

v

Need to protect the clocks from getting far out of sync —-
Hproptq;, qi] checks the neighboring clocks before advancing t;, g

v

Challenge: advancing clocks one at a time would violate terms in
Heoge. We solve this with “dressed stabilizers.”



Dressing stabilizers to avoid frustration

> We need to tell the stabilizers “what time it is” so that they can
accomodate diffusive propagation without frustration,
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» Stabilizers acting on “staggered” time configurations rotate the
qubits that are lagging behind (or getting ahead),
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» Spacetime view of advanced / retarded potentials in E&M

» Dressing for two qubit gates intertwines stabilizers from distinct
logical qubits, but terms remain k-local.

» Suffices to limit staggering to constant window ¢ (speed of light).
Locality and number of terms grows exponentially in c.



Everything is unitary in a larger Hilbert space

Replace projective measurement [y + My = I of the physical qubits
with coherent unitaries onto the classical ancillas:

[1)10) — Mo[¢)[0) + My|¢)[1)

Each physical qubit is measured by a “classical wire”. The classical
wire is a logical ancilla encoded in the repetition code.

Tip of the wire is very pointy (local, bounded degree interactions),
then grows like a concatenated tree to become macroscopic.

Classical post-processing is global and takes poly time. The rest of
the computation “waits around” for this to be done.



The 4D spacetime view of active error correction

Consider the history state of a fault-tolerant quantum computer e.g.
surface code qubits connected to a classical computer.

Instead of a code Hamiltonian, such a scheme depends on actively
measuring and correcting stabilizers.

There is no energetic protection of the qubits, but there is energetic
protection from the materials in the classical computer.

Active error correction is possible because we dump entropy from
quantum computers into classical self-correcting memories.

In our case it suffices for H.oqe to be a repetition code acting on the
(coherent) classical ancilla.



Analysis of the rotated Gibbs state

The entire Hamiltonian is unitarily equivalent to a diffusing
membrane and a static code Hamiltonian, the dressing disappears:

W = Z U(T)|T> <T| I’ WTHW = Hmembrane ® I + / ® Hcode

Tvalid

Put time configurations on a circle (UlT...UTTUT...Ul), symmetry
makes all valid time configurations equally likely in every eigenstate.

Initialization: classical ancillas in logical 0 state protected by
repetition H.,q., computational qubits in arbitrary state.

Metastable Gibbs state of WTHW is uniform over times, maximally
mixed on computational qubits, and close to 0 on ancillas.



Analysis of the real Gibbs state

Diagonal elements of the thermal density matrix of H in the time
register basis have the form

|T> <T| Y U(T) (pencoded & Pencoded) UT(T)

qubits ancillas

FT circuit U(7) coherently measures and corrects syndromes to
initialize the quantum code and evolve the computation.

Correct operation of U(T) depends on dumping entropy into the
thermally stable classical logical ancillas.

Thermal stability of the ancillas is unaffected by W (e.g. Davies
generators only depend on the spectral properties of H).

Intrinsic control errors in local H terms: ||Wactual — Wideal|| is small
because W is a fault-tolerant circuit.



Summary and Outlook
Universal quantum computation in a finite temperature state of a

k-local Hamiltonian with polynomial overhead.

4D self-correcting memory from the history state of 3D FT-QC.
Relates planar FT architectures to self-correction in 3D.

Lower bounding the gap of Hyembrane 1S an open problem in
mathematical physics; to obtain a tractable gap analysis we consider
nonuniform distributions of time configurations.

Benefit of applying the scheme to smaller geometrically local
architectures that may not be fully thermally stable?

Thank you for your attention!



