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Deformation of Small Systems

Numerical or Experimental observations (granular materials,
foams, nanoindentation): Very intermittent response
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Intermittency smears out
with:

◮ High temperature T
◮ High strain rate γ̇

◮ Large system size N

Suggest that deformation is heterogeneous at a small
(mesoscopic) scale



Spatial Organization of Deformation
[Maeda & Takeuchi, (1978)]

Quasi-static Deformation (Numerics)
[Argon & Kuo (1979)]

Disordered bubble raft
[Falk & Langer (1998)]

◮ Shear occurs in localized spots = “Shear Transformation
Zones”

◮ Elementary shear analogous to the nucleation of a
dislocation loop (Argon (1979))



Avalanche Mechanism at Mesoscopic Scale

◮ Elementary shear associated with quadrupolar
transformations

◮ Transfer of constraint between elementary shear
transformations lead to localization [Bulatov & Argon
(1994), Langer (2001), Baret et al (2002)]
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Two Types of Theories

◮ Hydrodynamic Approaches:
[Spaepen(1977)]
[Argon (1979)]
[Falk et Langer (1998)]

◮ Mesoscopic Models:
[Bulatov et Argon (1994)]
[Baret, Vandembroucq et Roux (2002)]
[Picard et al(2004)]

Question: Does localization originates from a “hydrodynamic”
instability or from mesoscopic transfer of constraints?
How can we test theories?

◮ No a priori identification of Shear Transformation Zones
◮ Few observations of elementary rearrangements (In dry

foams [Kabla & Debreageas (2003)])
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Recent Numerical works
◮ MD simulations

◮ Yamamoto, Onuki (1997)
◮ Falk, Langer (PRE 1998)
◮ Rottler, Robbins (PRE 2002, PRE 2003)
◮ Varnik, Bocquet, Barrat, Berthier (PRL 2003, JCP 2004)

◮ Athermal, Quasi-static simulations
◮ Utz, Debenedetti, Stillinger (PRL 2000)
◮ Malandro, Lacks (PRL 1998, JCP 2000)
◮ Schuh, Lund (PRL 2003, Intermetallics 2004)



Athermal, Quasi-Static Limit

◮ Problem: intrinsic limitation of MD simulations: short
timescales hence high shear rates

◮ Mimic experiments by taking the limits:
◮ T << Tg : Limited role of Thermal Fluctuations
◮ Small strain rate: γ̇ << 1/τaging

◮ Protocol:
◮ Minimize energy
◮ Strain simulation cell
◮ Start again



Shear-induced changes of PEL

Indicate elementary transitions associated to localized
rearrangements: δσ → 0.



The PEL Picture

◮ Strain biases potential energy landscape

Increasing Strain
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Atomistic Model and Algorithm

◮ Potentials:
◮ Harmonic: U = 1

2ks2

◮ Hertzian: U = 1
2ks5/2

◮ Lennard-Jones: U = k(r−12 − 2r−6)

◮ Binary mixture.
◮ “Lees-Edwards” boundaries.
◮ Quasistatic Shearing: limit T → 0,

γ̇ → 0
◮ Apply uniform shear.
◮ Minimize energy at fixed box.
◮ Repeat.
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Stress-strain Curve
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Small System – Small Events
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Small System – Small Events



Observations on a Large System

Phys. Rev. Lett. 93, 016001 (2004)
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An Issue about Localization

Indication of a diverging lengthscale



Size of avalanches
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Zooming on the First Quadrupole
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More about the Eschelby Calculation

◮ Decay in 2D:
σxy = 2F a

π r2 cos(4θ)

◮ With:
◮ F ∼ aµ ǫ0
◮ ǫpl = a2 ǫ0
◮ Hence:

a F ∼ a2 µ ǫ0 →
Constant
when a → 0



Fourier Analysis of the First Quadrupole

◮ Take radial component
of displacement field

◮ Take its amplitude
◮ In 2D: should decay as,

1/r3
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Catastrophes
◮ What happens when H becomes singular?
◮

dr
dγ

→ ∞, dσ

dγ
→ −∞.
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Scaling at the Onset of Failure

◮ Recall: dr
dγ

= H−1.Ξ

◮ At incipient failure:
λ∗(x) ∼ ax

◮ x(γ) ∼
√

2(γc − γ)/a
◮ λ∗(γ) ∼

√
2a(γc − γ)

◮ µ̃ ∼ −(ξ∗)2/
√

γc − γ
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Critical Mode in Real Space

◮
dsiα
dγ

(∆γ ∼ 10−9)



Summary

◮ Elementary quadrupolar transformation can be observed
at the onset of a cascade

◮ ...but they are difficult to separate at later stages
◮ A plastic event is a complex process: avalanche

◮ Power-law distribution of avalanches sizes
◮ Size of largest events determined by system size
◮ Results from long-range elastic coupling
◮ Speaking of criticality: are power laws a property of the

quasi-static limit?
◮ Directions:

◮ Need for 3D numerical studies
◮ Finite strain-rates: departure from quasi-static limit
◮ How timescales come into the picture?
◮ How to construct theories of plasticity?
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