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Introduction
Following Bowden and Tabor (2001), write

Ffr = τfrAc.

where Ac is the contact area and τfr is the friction stress.

Two contributions to τfr: adhesion at the interface and
inelastic deformation of asperities.

Confine attention to the initiation of sliding.

Contact sizes between ≈ 0.05 µm to ≈ 100 µm.

Issues considered:

The effect of contact size and spacing on τfr.
The energy dissipated in initiating sliding across a single
contact.
The interaction between contacts (indentation only).
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Background
Micron scale plasticity in crystalline solids is size dependent,
e.g. the indentation size effect.

Measurements of τfr: AFM, Ac ≈ 30− 60 nm2, τfr/µ ≈ 1/40

(Carpick et al., 1996); SFA, Ac ≈ 5× 109 − 2× 1011 nm2,
τfr/µ ≈ 1/1300 (Homola et al., 1990).

Previous discrete dislocation analyses.

Polonsky and Keer (1996) – size dependence of the
hardness.
Hurtado and Kim (1999) – interface dislocations only: (i)
small contacts – τfr is the theoretical shear strength; (ii)
large contacts – τfr is the Peierls stress; (iii) transition –
τfr ∝ a−1/2 (nucleation controlled, Rice-Thompson
model).
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Modeling Framework

Single crystals.

Attention is confined to crystals where the only inelastic
deformation mechanism is dislocation glide.

Two-dimensional, plane strain analyses.

Small deformation formulation – geometry change effects
neglected.

Quasi-static analyses.

Discrete dislocation plasticity.

Comparison with continuum slip plasticity for the
multi-contact (indentation) analysis.
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Discrete Dislocation Plasticity
Dislocations are treated as discrete entities and modeled as
line singularities in an elastic solid.

Long range interactions between dislocations come directly
from elasticity theory.

Formulate and solve general boundary value problems where
plastic flow is represented by the collective motion of discrete
dislocations.

continuum

(a) (b)

(c)

(d)(e)

plastic zone

crystal plasticity
zone

kitp-05 – p.5



Dislocations

Burgers vector magnitude b.

Elasticity – accurately represents dislocation fields beyond
5b− 8b from the core.

The stress field is long range.

σij ∝ b
fij
r

A dislocation density of 1013 m−2 corresponds to 10 µm−2.
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Boundary Value Problems
Issue:

Singular dislocation fields are not well-represented
numerically.

σ
(k)
ij ∝

f
(k)
ij

r

∮

Γ

∂ui
∂xj

dxj 6= 0

Resolution:

Represent the singular fields explicitly.

Use superposition.

Exploit fact that the singular fields satisfy

∂σ
(k)
ij

∂xj
= 0
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Boundary Value Problems – Small Strain Theory

ui = ũi + ûi , εij = ε̃ij + ε̂ij , σij = σ̃ij + σ̂ij .

(̃ ) fields – sum of the singular equilibrium fields of the

individual dislocations, e.g. σ̃ij =
∑

k σ
(k)
ij , σ(k)ij,j = 0.

(̂ ) fields – image fields that correct for the boundary
conditions and are non-singular.

σ̂ij,j = 0 σ̂ijnj = T 0

i − T̃i on Sf ûi = u0

i − ũi on Su

∫

V

σ̂ijδûi,jdV =

∫

ST

(T 0

i − T̃i)δûidS
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Peach-Koehler Force
The change in potential energy Π associated with a change in
dislocation position.

δΠ = −
∑

i

∫

Li

f
i · δsi dl

Glide component of the Peach-Koehler (configurational)
force f

i

f i = n
i ·



σ̂ +
∑

j 6=i

σ
j



 · bi
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Dislocation Constitutive Rules – 2D
Plane strain, single crystals, isotropic elasticity; edge

dislocations only.

Glide component of the Peach-Koehler force.

f (k) = n
(k) ·

[

σ̂ +
∑

j 6=k

σ
(j)

]

· b(k)

Dislocation nucleation (Frank-Read sources) – nucleation

occurs when f (k) at a source reaches bτnuc during tnuc.

Dislocation motion – v(k) = f (k)/B.

Dislocation annihilation – annihilation distance Le.

Obstacles – pin dislocations and release them once f(k) attains

bτobs.
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Computational Procedure

1. At time t the state of the body is known including σij(xk, t)
and the positions of all dislocations.

2. An increment of loading is prescribed.

3. The state of the body at t+ dt needs to be determined.

Calculate the dislocation interaction force.
Multi-body interaction calculation.

Calculate the change in dislocation structure caused by
dislocation nucleation, dislocation annihilation, etc.

Evaluation of constitutive rules.
Calculate the image fields for the updated dislocation
arrangement, i.e. the (̂ ) fields.

Finite element calculation.
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Discrete Dislocation Plasticity

Input:

Elastic constants; slip systems; dislocation constitutive
parameters; dislocation sources and obstacles.

Output:

The stress and deformation response.

Evolution of the dislocation structure.

Comments:
Dislocations form self-organized patterns.

Dislocation dynamics is chaotic.
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Mode I Crack, Single Crystal, Two Slip Systems
Classical crystal plasticity – sectors of constant stress, Rice
(1987).

Dislocation structure.

Many internal sources – no special dislocation nucleation from the crack tip.
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Total and (̂ ) Field Stress Distributions
Three slip systems.

Total (̂ ) field
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Single Contact – Initiation of Sliding

Single crystal, three slip systems specified by θ = ±60◦, 0◦.

First, prescribe monotonically increasing p (but in most cases
p = 0).

Second, u1 = U(t) and u2 = 0 on AB, BC and CD.

No restriction on normal displacements where p prescribed.
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Cohesive Relations
Softening relation Non−softening relation

PSfrag replacements

τmax
τmax

-τmax
-τmax

δtδt

-δt-δt ∆t∆t

x1
x2
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Parameters and Stress-Strain Response
E = 70 GPa, ν = 0.33.

b = 0.25 nm, active slip plane spacing 100b, B = 10−4 Pa s,
Le = 6b.

mean τ̄nuc = 50 MPa with standard deviation 10 MPa,
tnuc = 10 ns, τobs = 150 MPa.

ρsrc = 72 /µm2, ρobs = 124 /µm2.
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Effect of Contact Size
Non-softening cohesive relation; τmax = 300 MPa.

p = 0.
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Effect of Contact Size
Softening cohesive relation; τmax = 300 MPa.

p = 0.
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Overall behavior is the same for both cohesive relations.

Qualitative features are the same as in the Hurtado-Kim
(1999) model even though the physics is very different.
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10 µm Contact
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1 µm Contact
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Parameter Studies

PSfrag replacements
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Effect of Source Density

ρsrc = 72 /µm2

ρsrc = 155 /µm2

At a sufficiently high source density, the slip mode approaches that of conventional ideal plasticity.
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Plastic Dissipation
Conservation of energy:

W = a

∫ U

0

τdU = Φ+Wplas +Wcohes

Elastic energy (excluding a region of radius 4b around each

dislocation core):

Φ =

∫

A

1

2
σij (ε̂ij + ε̃ij) dA

Cohesive energy:

Wcohes =

∫

Scoh

[∫

Ttd∆t

]

dS
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Plastic Dissipation

Wplas = a

∫ U

0

τdU − Φ−Wcohes

Direct calculation of Wplas is complicated by the fact that the
plastic part of the deformation involves displacement jumps
across the slip planes so that the displacement gradient field
involves delta functions.

Approximation – introduce a smooth strain rate field, ε̇dij , in
each finite element by differentiating the total displacement
rate field u̇i in that element using the finite element shape
functions:

Wplas =

∫

A

wplasdA wplas =

∫ t

0

σij ε̇
d
ijdt−

1

2
σij (ε̂ij + ε̃ij)
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Plastic Dissipation
For a sufficiently large contact size, the energy is mainly
partitioned into elastic energy and plastic dissipation.

The elastic energy involves energy stored in the dislocation
structure and the energy associated with the applied loads.

Below a critical contact size, there are no dislocations and the
cohesive energy dominates.
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Unloading
Less than 20 % stored energy for the a = 10µm contact.

About 40 % stored energy for the a = 1µm contact.
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Local Plastic Dissipation
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Contact Interactions
Comparison with conventional crystal plasticity.

Geometry changes neglected.

ε̇ij =
1

2
(u̇i,j + u̇j,i) ε̇ij = ε̇eij + ε̇pij

Slip on discrete slip systems.

ε̇pij =
3

∑

α=1

γ̇(α)

2
(s
(α)
i m

(α)
j + s

(α)
j m

(α)
i )

Equal flow strength on all slip systems; linear hardening.
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Contact Interactions
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Contact Interactions
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Concluding Remarks
For sufficiently small contact sizes, adhesion dominates,
τfr = O(τmax); for sufficiently large contacts plasticity
dominates, τfr = O(σY ); in the intermediate regime,
τfr ∝ a−1/2, but this scaling can be lost for a high source
density.

For large large contact sizes (and high source densities),
slip and plastic dissipation is mainly in a band at the
surface and parallel to it.
In the intermediate regime, slip is oblique to the surface,
creating an asperity ahead of the slider even for an
initially flat surface, high plastic dissipation extends
further into the material and the relative amount of energy
stored in the dislocation structure is greatest.

The scaling (with both size and material properties) can be
quite different from what conventional continuum plasticity
predicts. kitp-05 – p.32
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